Informed Search

Blind search - no notion concept of the “right direction”
- can only recognize goal once it's achieved

» Heuristic search — we have rough idea of how good various
states are, and use this knowledge to guide our search

=« Can find solutions more efficient than
uninformed

= General approach is best-first-search

= A node is selected based on an evaluation
function f(n)

= A node that seems to be best is picked and it
may not be the actual best

Best First Search

* The ldea:

— use an ewvalation fimctionfor each node...
estimate of ““desirability"

— Expand most desirable unexpanded node
Implementation

— Fringe: is a queue sorted in decreasing order
of desirability

Special cases
Greedy
A*




Cost function 7(n)

m A function £ is maintained for each node
f(n) = g(n) + h(n), nis the node in the open list

= “Node chosen” for expansion is the one with least 7 value

Z(n)1is the cost from root ,$'to node n

h(n)is the estimated cost from node nto a goal
For BFS: /=0,

For DES: =0,

For greedy g =0

Greedy search

» Expands a node it sees closest to the goal

« ) =hn)
» Resembles DFS in that it prefers to follow a
single path all the way to the goal

= Also suffers from the same defects of DFS, it
may stuck in a loop i.e. not complete As well
as it is not optimal.




Hill climbing

This is a greeayalgorithm
Expands a node it sees closest to a goal

nn) =)

The algorithm
select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)
select N, the highest-value child of C;
return C if its value is better than the value of N;

Hill Climbing search example
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Hill Climbing search example
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Hill Climbing search example

— - a4

356 176 380 193

Straight-line distance
‘© Bucharest

374

Straight-line distance

‘© Bucharest

Arad 86
Bucharest a
180
242
161
176

151

241

74




Hill climbing

Complete:
No, Can get stuck in loop. Complete if loops are avoided.
Time complexity?

O(b™), but with some good heuristic, it could give better
results

Space complexity?
O(b"), keeps all nodes in memory
Optimality?

No

e.g. Arad->Sibiu->Rimnicu Virea—-> Pitesti->Bucharest is
shorter!

Hill-climbing search

» Problem: depending on initial state, can get stuck in local
maxima,...etc

objective function global maxirmim
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Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far

away.
3. Theridge problem: almost every move takes
us down.
Solution:

Randome-restart hill climbing is a series of hill-
climbing searches with a randomly selected
start node whenever the current search gets
stuck.

Algorithm A*

B One of the most important advances in Al search algs.

B [dea: avoid expanding paths that are already expensive
f(n) = g(n) + h(n)

B g(n) = least cost path to n from S found so far
B /(n) = estimated cost to goal from n

B f(n)= estimated total cost of path through n to goal




The A* procedure

Hill-climbing (and its improved versions) may miss an
optimal solution. Here is a search method that ensures
optimality of the solution.

The algorithm

keep a list of partial paths (initially root to root, length 0);
repeat

succeed if the first path P reaches the goal node;
otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by the sum of two values: the real cost of P till now,
and an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node
reached so far;

until
success or the list of paths becomes empty;

The A* procedure

A heuristic that never overestimates is also called
optimistic or admissible.

We consider three functions with values 2 0:
* g(n) is the actual cost of reaching node n,

* h*(n) is the actual w24rromrrremaining cost,
* h(n) is the optimistic estimate of h(n).




Admissible heuristics

» A heuristic #/n)is admissible if for every node 72

) s i), where /7' (n)is the true cost to reach the
goal state from »2

* An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

e Theorem: If A/n)is admissible, A" using is optimal

Admissible heuristics

E.g., for the 8-puzzle:

» /1,4m)=number of misplaced tiles

» /147 =total Manhattan distance

(i.e., no. of squares from desired location of each tile)
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Admissible heuristics

E.g., for the 8-puzzle:

» /f14n)= number of misplaced tiles

» /1477)=total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
. n1 :S} — ? 8 Start State Goal State

e hy(S) =7 3+1+2+2+42+43+3+2 = 18

Admissible heuristics

It /2,/n) >= 1, (r7) Hrall n, both are admissible
Then /,dominates /7,and is usually better for search

Typical Costs
» d=141IDS = 3,473,941 nodes
A*(/1) = 539 nodes
A*(/#2) = 113 nodes
« d=241IDS ~ 54,000,000,000 nodes
A(/,) = 39,135 nodes
A(/42) = 1,641 nodes
Remark: Given /,and /2, any two admissible functions
then A(n) = max {#/n), /24n)} is also admissible




A’ search example
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A’ search example
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A’ search example
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Properties of A*

» Complete?

Yes (unless there are infinitely many)
» Time/Space?

» Exponential mostly

* Optimal?

Yes

8-Puzzle

f(N) = h(N) = number of misplaced tiles




8-Puzzle

f(N) = g(N) + h(N)

with H(N) = number of misplaced tiles

8-Puzzle

f(N) = h(N) = 2 distances of tiles to goal




Local Search Algorithms

In many optimization problems, pa#7is irrelevant
the goal state itself is the solution

Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

Operates using only single current state, rather than multiple
paths.

Find Optimal Configuration ( satisfies the constraints)

Use Aerative improvernert algortinms

A Complete local search algorithm finds a goal if exists

An Optimal algorithm finds the global minimum or maximum




