Informed Search

- Blind search no notion concept of the "right direction"
 can only recognize goal once it's achieved
- Heuristic search we have rough idea of how good various states are, and use this knowledge to guide our search
- Can find solutions more efficient than uninformed
- General approach is best-first-search
- A node is selected based on an evaluation function f(n)
- A node that **seems** to be best is picked and it may not be the actual best

Best First Search

- The Idea:
 - use an *evaluation function* for each node... estimate of ``desirability"
 - Expand most desirable unexpanded node

Implementation

Fringe: is a queue sorted in decreasing order of desirability

Special cases

Greedy

A*

Cost function *f*(*n*)

• A function f is maintained for each node

f(n) = g(n) + h(n), n is the node in the open list

- "Node chosen" for expansion is the one with least f value
- g(n) is the cost from root S to node n
- h(n) is the estimated cost from node n to a goal
- For BFS: f = 0,
- For DFS: f = 0,
- For greedy g = 0

Greedy search

- Expands a node it sees closest to the goal
- f(n) =h(n)
- Resembles DFS in that it prefers to follow a single path all the way to the goal
- Also suffers from the same defects of DFS, it may stuck in a loop i.e. not complete As well as it is not optimal.

Hill climbing

This is a *greedy* algorithm

Expands a node it sees closest to a goal

f(n) = h(n)

The algorithm

select a heuristic function;

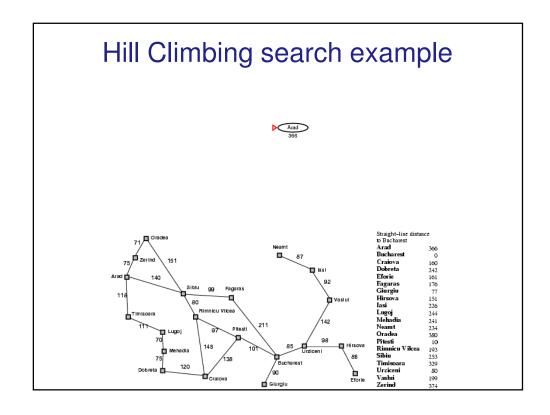
set C, the current node, to the highest-valued initial node;

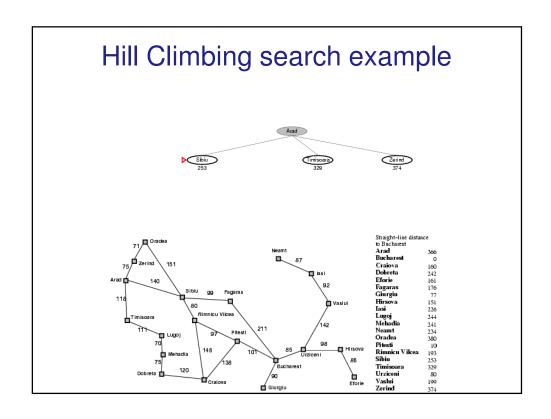
Loop until success or no more children(fail)

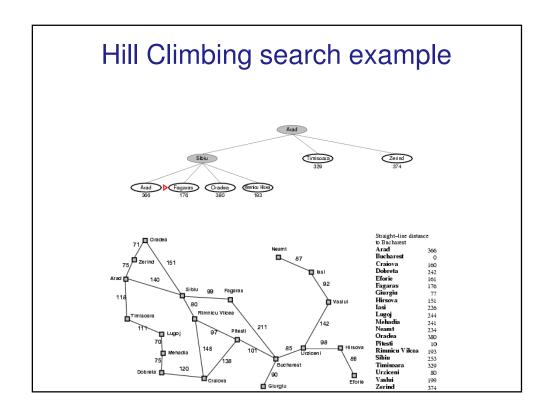
select N, the highest-value child of C;

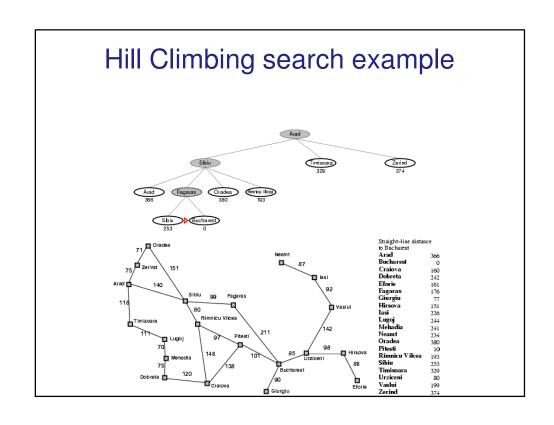
return C if its value is better than the value of N;

Hill Climbing search example Straight-line distance Oradea to Bucharest Neamt Arad 366 Bucharest 87 Zerind Craiova 160 Dobreta 242 Eforie 140 161 Fagaras 176 Sibiu 99 Fagaras Giurgiu 77 118 Hirsova 🖿 Vaslui 151 Iasi 226 Rimnicu Vilcea Lugoj 244 Mehadia 142 241 Neamt 234 Pitesti 🗖 Lugoj Oradea 380 Pitesti 10 Hirsova 148 Rimnicu Vilcea Mehadia 193 Urziceni Sibiu 253 Bucharest Timisoara 329 Dobreta 🗖 Urziceni 80 90 ☐_{Craiova} Vaslui 199 Eforie 🗂 Giurgiu Zerind 374









Hill climbing

Complete:

No, Can get stuck in loop. Complete if loops are avoided.

Time complexity?

 $O(b^n)$, but with some good heuristic, it could give better results

Space complexity?

 $O(b^m)$, keeps all nodes in memory

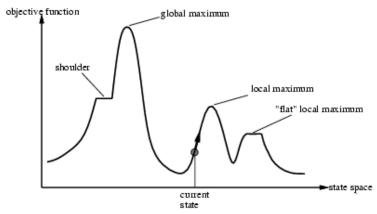
Optimality?

No

e.g. Arad→Sibiu→Rimnicu Virea→Pitesti→Bucharest is shorter!

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima,...etc



Problems with hill climbing

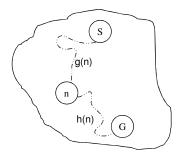
- 1. Local maximum problem: there is a peak, but it is lower than the highest peak in the whole space.
- 2. The plateau problem: all local moves are equally unpromising, and all peaks seem far away.
- 3. The ridge problem: almost every move takes us down.

Solution:

Random-restart hill climbing is a series of hillclimbing searches with a randomly selected start node whenever the current search gets stuck.

Algorithm A*

- One of the most important advances in AI search algs.
- Idea: avoid expanding paths that are already expensive f(n) = g(n) + h(n)
- g(n) = least cost path to n from S found so far
- h(n) = estimated cost to goal from n
- \blacksquare f(n) = estimated total cost of path through n to goal



The A* procedure

Hill-climbing (and its improved versions) may miss an optimal solution. Here is a search method that ensures optimality of the solution.

The algorithm

keep a list of partial paths (initially root to root, length 0); repeat

succeed if the first path ${\sf P}$ reaches the goal node;

otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by **the sum of two values:** the real cost of P till now, and an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node reached so far;

until

success or the list of paths becomes empty;

The A* procedure

A heuristic that never overestimates is also called **optimistic** or **admissible**.

We consider three functions with values ≥ 0 :

- g(n) is the actual cost of reaching node n,
- h*(n) is the actual *unknown* remaining cost,
- h(n) is the optimistic estimate of h(n).

Admissible heuristics

- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Theorem: If *h(n)* is admissible, A* using is optimal

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- h₂(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Goal State

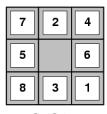
•
$$h_2(S) = ?$$

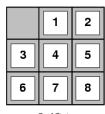
Admissible heuristics

E.g., for the 8-puzzle:

- h₁(n) = number of misplaced tiles
- hand = total Manhattan distance

(i.e., no. of squares from desired location of each tile)





- $h_1(S) = ?8$
- $\underline{h_2(S)} = ? 3+1+2+2+3+3+2 = 18$

Admissible heuristics

- If $h_2(n) >= h_1(n)$ for all n, both are admissible
- Then h_2 dominates h_1 and is usually better for search

Typical Costs

• d = 14 IDS = 3,473,941 nodes

 $A^*(h_1) = 539 \text{ nodes}$

 $A^*(h_2) = 113 \text{ nodes}$

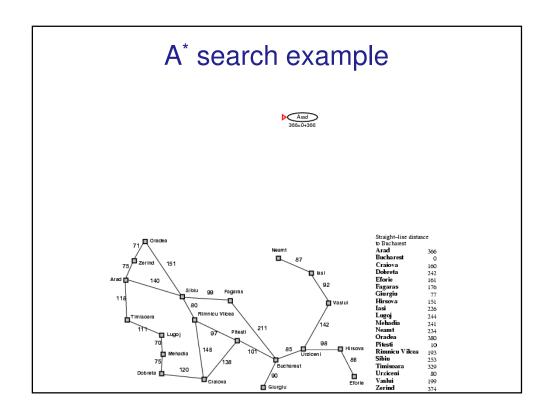
• $d = 24 IDS \sim 54,000,000,000 nodes$

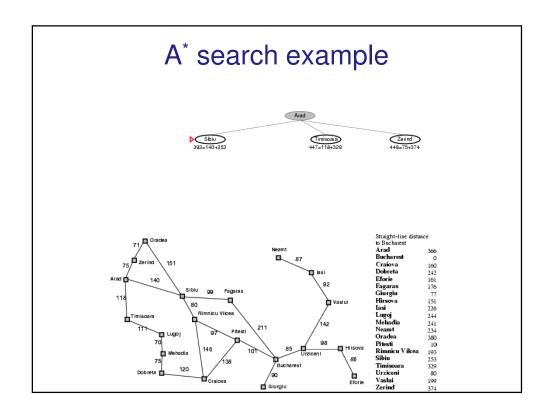
 $A(h_1) = 39,135 \text{ nodes}$

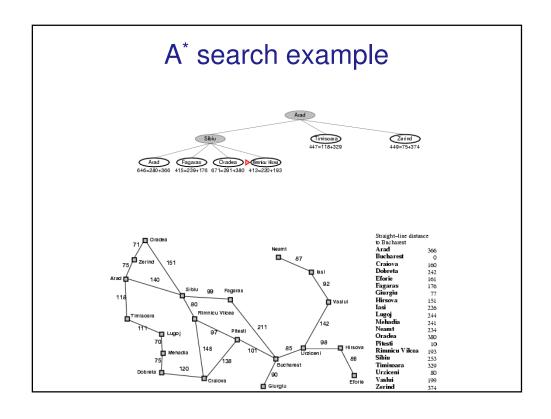
 $A(h_2) = 1,641 \text{ nodes}$

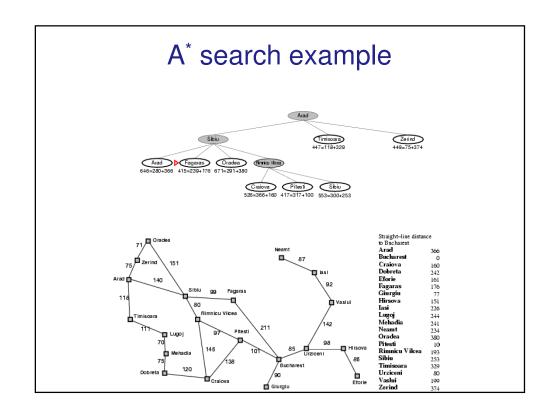
Remark: Given h_1 and h_2 any two admissible functions

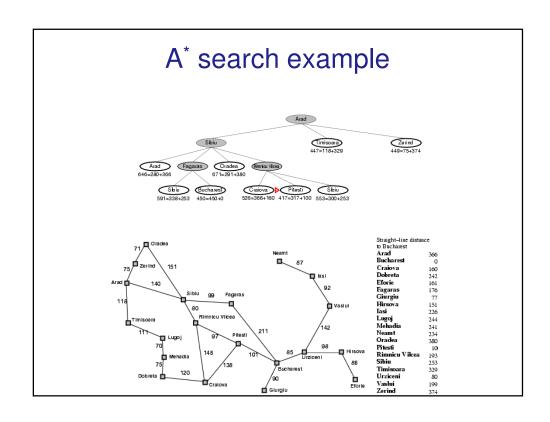
then $h(n) = \max \{h(n), h(n)\}\$ is also admissible

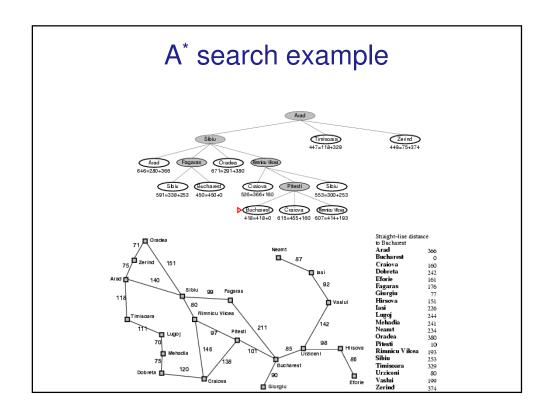












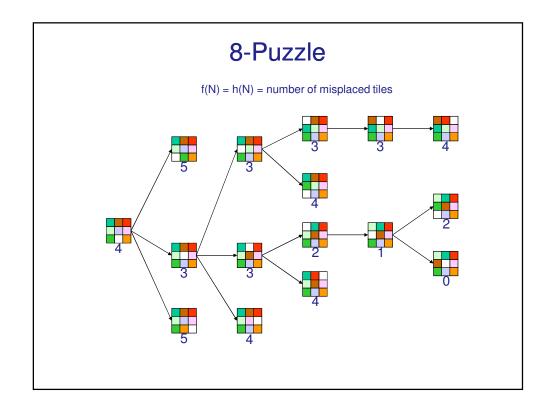
Properties of A*

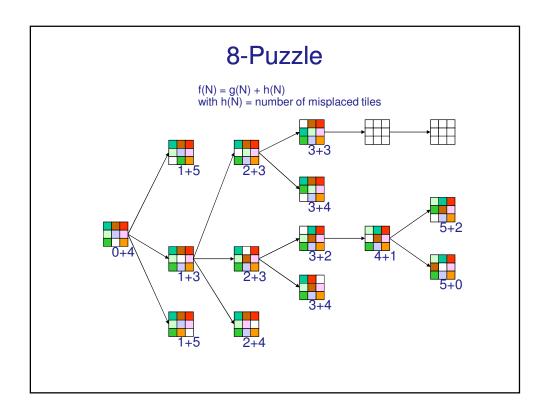
• Complete?

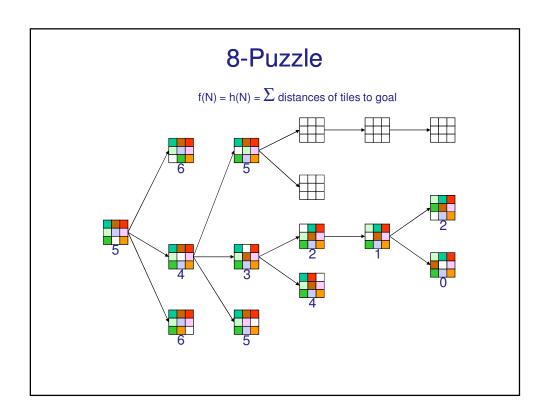
Yes (unless there are infinitely many)

- Time/Space?
- Exponential mostly
- Optimal?

Yes







Local Search Algorithms

- In many optimization problems, *path* is irrelevant
- the goal state itself is the solution
- Ex: The 8-queen problem, the final configuration of the queens is the important not the order they were put
- Operates using only single current state, rather than multiple paths.
- Find Optimal Configuration (satisfies the constraints)
- Use iterative improvement algorithms
- A **Complete** local search algorithm finds a goal if exists
- An **Optimal** algorithm finds the global minimum or maximum