Informed Search

Blind search - no notion concept of the “right direction”
- can only recognize goal once it's achieved

» Heuristic search — we have rough idea of how good various
states are, and use this knowledge to guide our search

=« Can find solutions more efficient than
uninformed

= General approach is best-first-search

= A node is selected based on an evaluation
function f(n)

= A node that seems to be best is picked and it
may not be the actual best

Best First Search

* The ldea:

— use an ewvalation fimctionfor each node...
estimate of ““desirability"

— Expand most desirable unexpanded node
Implementation

— Fringe: is a queue sorted in decreasing order
of desirability

Special cases
Greedy
A*

Cost function 7(n)

m A function £ is maintained for each node
f(n) = g(n) + h(n), nis the node in the open list

= “Node chosen” for expansion is the one with least 7 value

Z(n)1is the cost from root ,$'to node n

h(n)is the estimated cost from node nto a goal
For BFS: /=0,

For DES: =0,

For greedy g =0

Greedy search

» Expands a node it sees closest to the goal

«) =hn)
» Resembles DFS in that it prefers to follow a
single path all the way to the goal

= Also suffers from the same defects of DFS, it
may stuck in a loop i.e. not complete As well
as it is not optimal.

Hill climbing

This is a greeayalgorithm
Expands a node it sees closest to a goal

nn) =)

The algorithm
select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)
select N, the highest-value child of C;
return C if its value is better than the value of N;

Hill Climbing search example

o Buchamst
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgin
Hirsova
[am

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

Straight-line distance

L]
0
L&l
42
L&l
L7&
151
125
M
1l
o)
10
193

15
39

L)

Hill Climbing search example

Straight-line distance
‘© Bucharest

374

Straight-line distance

© Bucharest

Arad w6
Bucharest a

Hill Climbing search example

— - a4

356 176 380 193

Straight-line distance
‘© Bucharest

374

Straight-line distance

‘© Bucharest

Arad 86
Bucharest a
180
242
161
176

151

241

74

Hill climbing

Complete:
No, Can get stuck in loop. Complete if loops are avoided.
Time complexity?

O(b™), but with some good heuristic, it could give better
results

Space complexity?
O(b"), keeps all nodes in memory
Optimality?

No

e.g. Arad->Sibiu->Rimnicu Virea—-> Pitesti->Bucharest is
shorter!

Hill-climbing search

» Problem: depending on initial state, can get stuck in local
maxima,...etc

objective function global maxirmim
3

—

shoulder

lacal maximmm

"flat" local maximmm

=cinte EPEI.EE

curment
stats

Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far

away.
3. Theridge problem: almost every move takes
us down.
Solution:

Randome-restart hill climbing is a series of hill-
climbing searches with a randomly selected
start node whenever the current search gets
stuck.

Algorithm A*

B One of the most important advances in Al search algs.

B [dea: avoid expanding paths that are already expensive
f(n) = g(n) + h(n)

B g(n) = least cost path to n from S found so far
B /(n) = estimated cost to goal from n

B f(n)= estimated total cost of path through n to goal

The A* procedure

Hill-climbing (and its improved versions) may miss an
optimal solution. Here is a search method that ensures
optimality of the solution.

The algorithm

keep a list of partial paths (initially root to root, length 0);
repeat

succeed if the first path P reaches the goal node;
otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by the sum of two values: the real cost of P till now,
and an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node
reached so far;

until
success or the list of paths becomes empty;

The A* procedure

A heuristic that never overestimates is also called
optimistic or admissible.

We consider three functions with values 2 0:
* g(n) is the actual cost of reaching node n,

* h*(n) is the actual w24rromrrremaining cost,
* h(n) is the optimistic estimate of h(n).

Admissible heuristics

» A heuristic #/n)is admissible if for every node 72

) s i), where /7' (n)is the true cost to reach the
goal state from »2

* An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

e Theorem: If A/n)is admissible, A" using is optimal

Admissible heuristics

E.g., for the 8-puzzle:

» /1,4m)=number of misplaced tiles

» /147 =total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
° nAS! — ? Start State Goal State

Admissible heuristics

E.g., for the 8-puzzle:

» /f14n)= number of misplaced tiles

» /1477)=total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
. n1 :S} — ? 8 Start State Goal State

e hy(S) =7 3+1+2+2+42+43+3+2 = 18

Admissible heuristics

It /2,/n) >= 1, (r7) Hrall n, both are admissible
Then /,dominates /7,and is usually better for search

Typical Costs
» d=141IDS = 3,473,941 nodes
A*(/1) = 539 nodes
A*(/#2) = 113 nodes
« d=241IDS ~ 54,000,000,000 nodes
A(/,) = 39,135 nodes
A(/42) = 1,641 nodes
Remark: Given /,and /2, any two admissible functions
then A(n) = max {#/n), /24n)} is also admissible

A’ search example

366=0+368

Straight-line distance
‘© Bucharest

393=140+253

4H49=75+374

Straight-line distance

© Bucharest

Arad w6
Bucharest o

A’ search example

misoaig,
447=118+320 449=754374

646=230+366 415=239+176 671=291+380 413=220+193

Straight-line distance
‘© Bucharest

o N . #47=118+329 449=75+374
B46=2804366 415=239+176 &7 1=2314380 . - —T—

526=365+160 417=317+100 553-300+253

Straight-line distance

© Bucharest

Arad 66
Bucharest a

A’ search example

Thed

e

>
-~ 447=113+329 449=75+3T4

G46=280+366 A ‘~‘ 671=291+380
b
581=338+253 450=450+0 E26=366+160 417=317+100 553-300+253

Straight-line distance
‘© Bucharest

GEED

P o #47=118+329 449754374
648=2804366 - . 671=2914380 S E—

531=3384253 450=45040 526=366+160 . 553=300+253

P D @D

418=418+0 615=435+160 GOT=4+14+193

Straight-line distance

© Bucharest
Arad w6
Bucharest o

Siblu gy Fagams

0] Hitsova

b3
Eforie

Properties of A*

» Complete?

Yes (unless there are infinitely many)
» Time/Space?

» Exponential mostly

* Optimal?

Yes

8-Puzzle

f(N) = h(N) = number of misplaced tiles

8-Puzzle

f(N) = g(N) + h(N)

with H(N) = number of misplaced tiles

8-Puzzle

f(N) = h(N) = 2 distances of tiles to goal

Local Search Algorithms

In many optimization problems, pa#7is irrelevant
the goal state itself is the solution

Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

Operates using only single current state, rather than multiple
paths.

Find Optimal Configuration (satisfies the constraints)

Use Aerative improvernert algortinms

A Complete local search algorithm finds a goal if exists

An Optimal algorithm finds the global minimum or maximum

