
7/11/2016

1

Informed Search

• Blind search - no notion concept of the “right direction”

- can only recognize goal once it’s achieved

� Heuristic search – we have rough idea of how good various
states are, and use this knowledge to guide our search

� Can find solutions more efficient than
uninformed

� General approach is best-first-search

� A node is selected based on an evaluation
function f(n)

� A node that seems to be best is picked and it
may not be the actual best

Best First Search

• The Idea:

– use an evaluation function for each node...
estimate of ``desirability''

– Expand most desirable unexpanded node

Implementation

– Fringe: is a queue sorted in decreasing order
of desirability

Special cases

Greedy

A*

Cost function f(n)

� A function f is maintained for each node

f(n) = g(n) + h(n), n is the node in the open list

� “Node chosen” for expansion is the one with least f value

� g(n) is the cost from root S to node n

� h(n) is the estimated cost from node n to a goal

� For BFS: f = 0,

� For DFS: f = 0,

� For greedy g =0

Hill climbing

This is a greedy algorithm

Expands a node it sees closest to a goal

f(n) =h(n)

The algorithm

select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)

select N, the highest-value child of C;

return C if its value is better than the value of N;

7/11/2016

2

Hill climbing

Complete:

No, Can get stuck in loop. Complete if loops are avoided.

Time complexity?

O(bm), but with some good heuristic, it could give better
results

Space complexity?

O(bm), keeps all nodes in memory

Optimality?

No

e.g. Arad�Sibiu�Rimnicu Virea�Pitesti�Bucharest is
shorter!

Hill-climbing search

• Problem: depending on initial state, can get stuck in local
maxima,…etc

Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far
away.

3. The ridge problem: almost every move takes
us down.

Solution:

Random-restart hill climbing is a series of hill-
climbing searches with a randomly selected
start node whenever the current search gets
stuck.

Algorithm A*
� One of the most important advances in AI search algs.

� Idea: avoid expanding paths that are already expensive

f(n) = g(n) + h(n)

� g(n) = least cost path to n from S found so far

� h(n) = estimated cost to goal from n

� f(n) = estimated total cost of path through n to goal

S

n

G

g(n)

h(n)

7/11/2016

3

The A* procedure
Hill-climbing (and its improved versions) may miss an

optimal solution. Here is a search method that ensures
optimality of the solution.

The algorithm
keep a list of partial paths (initially root to root, length 0);

repeat

succeed if the first path P reaches the goal node;

otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by the sum of two values: the real cost of P till now,
and an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node
reached so far;

until

success or the list of paths becomes empty;

A heuristic that never overestimates is also called
optimistic or admissible.

We consider three functions with values ≥ 0:

• g(n) is the actual cost of reaching node n,

• h*(n) is the actual unknown remaining cost,

• h(n) is the optimistic estimate of h(n).

The A* procedure

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the
goal state from n.

• An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

• Theorem: If h(n) is admissible, A* using is optimal

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ?

• h2(S) = ?

7/11/2016

4

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

• If h2 (n) >= h1 (n) for all n, both are admissible

• Then h2 dominates h1 and is usually better for search

Typical Costs

• d = 14 IDS = 3,473,941 nodes

A*(h1) = 539 nodes

A*(h2) = 113 nodes

• d = 24 IDS ~ 54,000,000,000 nodes

A(h1) = 39,135 nodes

A(h2) = 1,641 nodes

Remark: Given h1 and h2 any two admissible functions

then h(n) = max {h1(n), h2(n)} is also admissible

Admissible heuristics

A* search example A* search example

7/11/2016

5

A* search example A* search example

A* search example A* search example

7/11/2016

6

Properties of A*

• Complete?

Yes (unless there are infinitely many)

• Time/Space?

• Exponential mostly

• Optimal?

Yes

88--PuzzlePuzzle

4

5

5

3

3

4

3 4

4

2 1

2

0

3

4

3

f(N) = h(N) = number of misplaced tiles

88--PuzzlePuzzle

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

88--PuzzlePuzzle

5

6

6

4

4

2 1

2

0

5

5

3

f(N) = h(N) = Σ distances of tiles to goal

7/11/2016

7

Local Search Algorithms

• In many optimization problems, path is irrelevant

• the goal state itself is the solution

• Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

• Operates using only single current state, rather than multiple
paths.

• Find Optimal Configuration (satisfies the constraints)

• Use iterative improvement algorithms

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum

Local Search Algorithms

• Search algorithms like BFS, DFS or A* explore
all the search space systematically by keeping
one or more paths in memory and by recording
which alternatives have been explored.

• Local search algorithms operate using a single
current state (rather than multiple paths)

• move only to neighbors of that state.

• Ignore paths

• Advantages:

– Use very little memory

– Can often find reasonable solutions in large or infinite
(continuous) state spaces.

Local Search Algorithms

• Good for Optimization problems

– find the best state according to some objective
function

– All states have an objective function

– Goal is to find state with max (or min) objective
value

– Local search can do very well on these problems.

Example n-queens

• Put n queens on an nxn board with no two queens on
the same row, column, or diagonal

• Local search: start with all n, move a queen to reduce
conflicts

Local Search Algorithms

7/11/2016

8

Local Search Algorithms

• Hill Climbing

• Simulated annealing

• Genetic algorithms

• Local search in continuous spaces

Local beam search

• One Solution to improve hill Climbing.

• Keep track of k states instead of one

– Initially: k randomly selected states

– Next: determine all successors of k states

– If any of successors is goal → finished

– Else select k best from successors and repeat.

• Major difference with random-restart search

– Information is used for k search branches.

• Also improved to stochastic beam search

Simulated Annealing

• Annealing is a process for obtaining low energy
states of a solid in a heat bath.

• The process contains two steps:

– Increase the temperature of the heat bath to a
maximum value at which the solid melts.

– Decrease carefully the temperature of the
heat bath until the particles arrange
themselves in the ground state of the solid.
Ground state is a minimum energy state of
the solid.

• The ground state of the solid is obtained only if
the maximum temperature is high enough and
the cooling is done slowly.

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])

for t ←←←← 1 to ∞ do

T ← schedule[t]

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← VALUE[next] - VALUE[current]

if ∆E > 0 then current ← next

else current ← next only with probability e∆E /T

The cost of a solution is
equivalent to the “energy” of
a state.

7/11/2016

9

Simulated Annealing

• The search is started with a randomized state.
loop we will move to neighboring states always
accepting the moves that decrease the energy
while only accepting bad moves accordingly to a
probability distribution dependent on the
“temperature” of the system.

• Decrease the temperature slowly, accepting
less bad moves at each temperature level until
at very low temperatures the algorithm becomes
a greedy hill-climbing algorithm.

