Search Strategies

Uninformed/Blind Search
— Breadth First Search
— Depth First Search
— Depth Limited Search
— Bidirectional Search

Informed/Heuristic Search
- Hill Climbing Search (Improvements)
- A* Algorithm

Measuring problem-Solving performance

What makes one search scheme better than another?
Completeness: Guarantee to find a solution?
Time complexity: How long is it to find a sol. (# of nodes)?

Optimality: Does the strategy find the shortest path (note
some books use least cost)?

Space complexity: How much memory is heeded (max. # of
nodes in memory)?




Notations

» b: Branching Factor that is maximum number
of successors of any node

 d : depth of the least cost solution
o C* : path cost of the optimal solution
e m : maximum depth of the state space

Breadth First Search

e Simple Strategy

 Theroot is expanded first, Then all its
successors, Then all their successors

e At a given depth, All nodes are expanded.
« With branching factor b, at level d, we have
1+b+b2+b3+...bd + b(bd-1) = O (b4*!) Nodes

e At level 12 with branching factor 10, we have 1013
nodes

e Space Problem !




Breadth First Search

* Expand the shallowest node
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BFS

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

0(bd+1)

Space complexity?

O(bd+1) : keeps every node in memory
Optimality?

Yes :finds shortest path

Remark:

If the definition of optimality is to find lowest cost
path then BFS is not optimal

Bidirectional Search

BFS in both directions
How could this help?

bd+1 VS 2b(d+1)/2
» Can reduce time complexity,
* Not always applicable
« May require lots of space
e Hard to implement




Bidirectional Search

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

O(bW+D72) b is branching factor, d is least cost to goal
Space complexity?

O(b(d+1)12)

Optimality?

yes

Depth First Search

» Always expand deepest node in the fringe of
the tree.

e Modest memory requirement, stores only
single path from root to leaf.

« With branching factor b, at level d, we store
only bm+1 i.e. O(bm)

« It may stuck in an infinite path and never finds
solution




Depth First Search

* Expand deepest unexpanded node
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Depth First Search

* Expand deepest unexpanded node
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Depth First Search
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DFS

Completeness?

No, fails in infinite depth spaces or spaces with loops
Yes, assuming state space finite.

Time complexity?

O(b*), terrible if mis much bigger than d. can do well if
lots of goals

Space complexity?
O(bm), i.e. linear
Optimality?

No may find a solution with long path

Depth-limited Search

Put a limit to the level of the tree
DFS, only expand nodes depth < L.

Completeness?

No, if L <d.

Time complexity?
o)

Space complexity?
O(bL)

Optimality?

No




lterative Deepening

 Calls depth-limited search with increasing limits until goal is

found

Limit =0
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lterative Deepening

Completeness?

Yes.

Time complexity?

o(t°) = (d+1) bP+db’ + ...+

Space complexity?

O(bd)

Optimality?

Yes; if looking for shortest path

Remark: IDS is better in space compelxity than BFS:

Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(IDS) = 50+ 400 + 3, 000 + 20,000 + 100, 000 = 123,450
N(BFS) = 10+ 100 + 1,000 + 10,000 + 100, 000 4+ 999,990 = 1,111, 100

BFS works as a queue. Pick the leftmost element of
the open list , evaluate it and add its children to the
end of the list, FIFO

DFS works as a stack. Pick the leftmost element of
the open list , evaluate it and add its children to the
beginning of the list, LIFO




Informed Search

Blind search - no notion concept of the “right direction”
- can only recognize goal once it's achieved

» Heuristic search — we have rough idea of how good various
states are, and use this knowledge to guide our search

=« Can find solutions more efficient than
uninformed

= General approach is best-first-search

= A node is selected based on an evaluation
function f(n)

= A node that seems to be best is picked and it
may not be the actual best

Best First Search

* The ldea:

— use an ewvalation fimctionfor each node...
estimate of ““desirability"

— Expand most desirable unexpanded node
Implementation

— Fringe: is a queue sorted in decreasing order
of desirability

Special cases
Greedy
A*




Cost function 7(n)

m A function £ is maintained for each node
f(n) = g(n) + h(n), nis the node in the open list

= “Node chosen” for expansion is the one with least 7 value

Z(n)1is the cost from root ,$'to node n

h(n)is the estimated cost from node nto a goal
For BFS: /=0,

For DES: =0,

For greedy g =0

Greedy search

» Expands a node it sees closest to the goal

« ) =hn)
» Resembles DFS in that it prefers to follow a
single path all the way to the goal

= Also suffers from the same defects of DFS, it
may stuck in a loop i.e. not complete As well
as it is not optimal.




Hill climbing

This is a greeayalgorithm
Expands a node it sees closest to a goal

nn) =)

The algorithm
select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)
select N, the highest-value child of C;
return C if its value is better than the value of N;

Hill Climbing search example

o Buchamst
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgin
Hirsova
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Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui
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Hill Climbing search example
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Hill Climbing search example
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Hill climbing

Complete:
No, Can get stuck in loop. Complete if loops are avoided.
Time complexity?

O(b™), but with some good heuristic, it could give better
results

Space complexity?
O(b"), keeps all nodes in memory
Optimality?

No

e.g. Arad->Sibiu->Rimnicu Virea—-> Pitesti->Bucharest is
shorter!

Hill-climbing search

» Problem: depending on initial state, can get stuck in local
maxima,...etc

objective function global maxirmim
3
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Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far

away.
3. Theridge problem: almost every move takes
us down.
Solution:

Randome-restart hill climbing is a series of hill-
climbing searches with a randomly selected
start node whenever the current search gets
stuck.




