
3/2/2015

1

Search Space Problems

� State Space : Graph of states (Express constraints and

parameters of the problem)

� Operators : Transformations applied to the states.

� Start state : S
0

(Search starts from here)

� Goal state(s) : {G} - Search terminates here.

� Cost : Effort involved in using an operator.

� Optimal path : Least cost path

8-queen problem

States: Any arrangements of 0 – 8 queens on board

Initial State: No queens on board

Successor function: Add a queen to any empty square

Goal State: 8 queens on the board, unattacked

3/2/2015

2

Men and Cannibals

Constraints

� The boat can carry at most 2 people

� On no bank should the cannibals outnumber the Men

� Move all people to the other side of the river

River

R

L

Missionaries Cannibals

boat

boat

3-Men 3-Cannibals

Men and Cannibals

State : <#M, #C, P>

#M = Number of men on bank L

#C = Number of cannibals on bank L

P = Position of the boat

S0 = <3, 3, L>

G = < 0, 0, R >

Operations

M2 = Two men take boat

M1 = One man takes boat

C2 = Two cannibals take boat

C1 = One cannibal takes boat

MC = One man and one cannibal takes boat

3/2/2015

3

<3,3,L>

<3,1,R> <2,2,R>

<3,3,L>

C2 MC

Search tree

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

8 -puzzle

Standard for the problem... Tile movement represented as the movement of the blank

space.

Operators:

L : Blank moves left

R : Blank moves right

U : Blank moves up

D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1

3/2/2015

4

3/2/2015

5

3/2/2015

6

3/2/2015

7

Example: Romania

• Initial State: at Arad

• States Space: being at any city

• Successor function: set of state-pairs

S(Arad) = Zerind

• Goal State: Bucharest

• Path cost : sum of distances

• Solution : sequence of states

3/2/2015

8

Example: Romania

Example: Romania

3/2/2015

9

Example: Romania

Tree Search Algorithm

• Basic Idea: Simulated exploration of state space by
generating successors of already explored states

3/2/2015

10

General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,
F, G

3/2/2015

11

Steps of GGS

1. Create a search graph G, consisting only of the start
node S; put S on a list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. Loop: if OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove from OPEN and
put on CLOSED, call this node n.

5. if n is the goal node, exit with the solution obtained by
tracing a path along the pointers from n to s in G.

6. Expand node n, generating the set M of its successors
that are not ancestors of n.

GGS steps (contd.)

7. Establish a pointer to n from those members of M that
were not already in G (i.e., not already on either OPEN
or CLOSED). Add these members of M to OPEN. For each
member of M that was already on OPEN or CLOSED,
decide whether or not to redirect its pointer to n. For
each member of M already on CLOSED, decide for each
of its descendents in G whether or not to redirect its
pointer.

8. Reorder the list OPEN using some strategy.

9. Go LOOP.

3/2/2015

12

Search Strategies

Uninformed/Blind Search

– Breadth First Search

– Depth First Search

– Depth Limited Search

– Bidirectional Search

Informed/Heuristic Search

- Hill Climbing Search

- A* Algorithm

Measuring problem-Solving performance

A strategy is defined by picking the order of node expansion

What makes one search scheme better than another?

Completeness: Guarantee to find a solution?

Time complexity: How long is it to find a sol. (# of nodes)?

Optimality: Does the strategy find the shortest path (note
some books use least cost)?

Space complexity: How much memory is needed (max. # of
nodes in memory)?

3/2/2015

13

Notations

• b: Branching Factor that is maximum number
of successors of any node

• d : depth of the least cost solution

• C* : path cost of the optimal solution

• m : maximum depth of the state space

Breadth First Search

• Simple Strategy

• The root is expanded first, Then all its
successors, Then all their successors

• At a given depth, All nodes are expanded.

• With branching factor b, at level d, we have

1+b+b2+b3+...bd + b(bd -1) = O (bd+1) Nodes

• At level 12 with branching factor 10, we have 1013

nodes

• Space Problem !

3/2/2015

14

Breadth First Search

• Expand the shallowest node

Breadth First Search

• Expand the shallowest node

3/2/2015

15

Breadth First Search

• Expand the shallowest node

Breadth First Search

• Expand the shallowest node

3/2/2015

16

BFS

Completeness?
Yes, if solution exists, there is a guarantee to find it

Time complexity?
O(bd+1)

Space complexity?
O(bd+1) : keeps every node in memory

Optimality?
Yes :finds shortest path

Remark:

If the definition of optimality is to find lowest cost
path them BFS is not optimal

Bidirectional Search

BFS in both directions

How could this help?
– bd+1 vs 2b(d+1)/2

• Can reduce time complexity,

• Not always applicable

• May require lots of space

• Hard to implement

3/2/2015

17

Bidirectional Search

Completeness?

Yes, if solution exists, there is a guarantee to find it

Time complexity?
O(b(d+1)/2), b is branching factor, d is least cost to goal

Space complexity?
O(b(d+1)/2)

Optimality?
yes

Uniform Cost Search

• Instead of expanding the shallowest node(like BFS),
uniform-cost search expands the node n with the lowest
path cost

• Will be optimal according to the lowest cost definition

• Uniform-cost search is guided by path costs rather than
depths, so its complexity cannot easily be characterized in
terms of b and d. If is measured in terms of the optimal
path C*

3/2/2015

18

Depth First Search

• Always expand deepest node in the fringe of
the tree.

• Modest memory requirement, stores only
single path from root to leaf.

• With branching factor b, at level d, we store
only bm+1 i.e. O(bm)

• It may stuck in an infinite path and never finds
solution

Depth First Search

• Expand deepest unexpanded node

3/2/2015

19

Depth First Search

• Expand deepest unexpanded node

Depth First Search

• Expand deepest unexpanded node

3/2/2015

20

Depth First Search

• Expand deepest unexpanded node

Depth First Search

• Expand deepest unexpanded node

3/2/2015

21

Depth First Search

• Expand deepest unexpanded node

Depth First Search

• Expand deepest unexpanded node

3/2/2015

22

Depth First Search

• Expand deepest unexpanded node

Depth First Search

• Expand deepest unexpanded node

3/2/2015

23

Depth First Search

• Expand deepest unexpanded node

Depth First Search

• Expand deepest unexpanded node

3/2/2015

24

Depth First Search

• Expand deepest unexpanded node

DFS

Completeness?
No, fails in infinite depth spaces or spaces with loops

Yes, assuming state space finite.

Time complexity?
O(bm), terrible if m is much bigger than d. can do well if
lots of goals

Space complexity?
O(bm), i.e. linear

Optimality?
No may find a solution with long path

3/2/2015

25

Depth-limited Search

Put a limit to the level of the tree

DFS, only expand nodes depth ≤ L.

Completeness?
No, if L ≤ d.

Time complexity?
O(bL)

Space complexity?
O(bL)

Optimality?
No

Iterative Deepening

• Calls depth-limited search with increasing limits until goal is
found

3/2/2015

26

Iterative Deepening

• Calls depth-limited search with increasing limits until goal is
found

Iterative Deepening
• Calls depth-limited search with increasing limits until goal is
found

3/2/2015

27

Iterative Deepening
• Calls depth-limited search with increasing limits until goal is
found

Iterative Deepening

• Completeness?

– Yes.

• Time complexity?
– O(bd) = (d+1) b0+db1+ …+bd

• Space complexity?
– O(bd)

• Optimality?
– Yes; if looking for shortest path

– Remark: IDS performs much faster than BFS:

3/2/2015

28

Remarks

• BFS works as a queue. Pick the leftmost element of
the open list , evaluate it and add its children to the
end of the list, FIFO

• DFS works as a stack. Pick the leftmost element of
the open list , evaluate it and add its children to the
beginning of the list, LIFO

Informed Search

• Blind search - no notion concept of the “right direction”

- can only recognize goal once it’s achieved

� Heuristic search – we have rough idea of how good various
states are, and use this knowledge to guide our search

� Can find solutions more efficient than
uninformed

� General approach is best-first-search

� A node is selected based on an evaluation
function f(n)

� A node that seems to be best is picked and it
may not be the actual best

