Search Space Problems

» State Space : Graph of states (Express constraints and
parameters of the problem)

> Operators : Transformations applied to the states.

- Start state : S, (Search starts from here)

> Goal state(s) : {G} - Search terminates here.

> Cost : Effort involved in using an operator.

> Optimal path : Least cost path

8-queen problem

States: Any arrangements of 0 — 8 queens on board
Initial State: No queens on board

Successor function: Add a queen to any empty square
Goal State: 8 queens on the board, unattacked

Men and Cannibals

R
River———
boat
| ‘ | ‘ |
3-Men 3-Cannibals
Constraints

« The boat can carry at most 2 people
« On no bank should the cannibals outnumber the Men
« Move all people to the other side of the river

Men and Cannibals

State : <#M, #C, P>

#M = Number of men on bank L

#C = Number of cannibals on bank L
P = Position of the boat

S0 =<3, 3, L>
G=<0,0,R>

Operations
M?2 = Two men take boat

M1 = One man takes boat

C2 = Two cannibals take boat

C1I = One cannibal takes boat

MC = One man and one cannibal takes boat

<3,3,L>
\

AN
C2 MC \

<3,1,R> <2,2,R> \

<3,3,L>

Search tree

8 -puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

Standard for the problem... Tile movement represented as the movement of the blank
space.

Operators:

L : Blank moves left

R : Blank moves right C(L)=C(R)=C(U)=C(D) =1
U : Blank moves up

D : Blank moves down

Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 0 7 8
Start State Goal State
states??
actions??
goal test??
path cost??
Example: The 8-puzzle
7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)

actions??
goal test??
path cost??

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 3
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??

path cost??

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test?7: = goal state (given)

path cost?7: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

(Example: Romania |

[JCradea

Neamt

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Initial State: at Arad

States Space: being at any city

Successor function: set of state-pairs
S(Arad) = Zerind

Goal State: Bucharest

Path cost : sum of distances

Solution : sequence of states

Example: Romania

Example: Romania

Example: Romania

Tree Search Algorithm

» Basic Idea: Simulated exploration of state space by
generating successors of already explored states

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

General Graph search Algorithm

1

1 3 10

@ ° @ Graph G = (V,E)
5 4 6

N
SIS

1) Open List : S @0 6) OL : EBD, FO8) G®.9
Closed list : @ CL:S,A,B,C,D
2) OL : AG:D, B3, (810 7) OL : FP®) G®9)
CL:S CL:S,A,B,C,D,E
3)OL: BS:3), €100 DA 8)OL : G®.9)
CL:S,A CL:S,A,B,C,D,E,F
4) OL : C(S:10, DA6) EB.7 9)OL: @
CL:S,A,B CL:S,A,B,C,D,E,
F G

5) OL : D), EB.7)
CL:S,A,B.C

Steps of GGS

1. Create a search graph G, consisting only of the start
node S; put Son a list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. Loop: if OPENis empty, exit with failure.

4. Select the first node on OPEN, remove from OPEN and
put on CLOSED, call this node n.

5. if nis the goal node, exit with the solution obtained by
tracing a path along the pointers from nto sin G.

6. Expand node n, generating the set M of its successors
that are not ancestors of 7.

GGS steps (contd.)

7. Establish a pointer to 7 from those members of Mthat
were not already in G (/.e., not already on either OPEN
or CLOSED). Add these members of Mto OPEN. For each
member of Mthat was already on OPEN or CLOSED,
decide whether or not to redirect its pointer to n. For
each member of M already on CLOSED, decide for each
of its descendents in G'whether or not to redirect its
pointer.

8. Reorder the list OPEN using some strategy.
9. Go LOOR

Search Strategies

Uninformed/Blind Search

— Breadth First Search
— Depth First Search

— Depth Limited Search
— Bidirectional Search

Informed/Heuristic Search
- Hill Climbing Search
- A* Algorithm

Measuring problem-Solving performance

A strategy is defined by picking the order of node expansion
What makes one search scheme better than another?
Completeness: Guarantee to find a solution?

Time complexity: How long is it to find a sol. (# of nodes)?

Optimality: Does the strategy find the shortest path (note
some books use least cost)?

Space complexity: How much memory is heeded (max. # of
nodes in memory)?

Notations

» b: Branching Factor that is maximum number
of successors of any node

 d : depth of the least cost solution
o C* : path cost of the optimal solution
e m : maximum depth of the state space

Breadth First Search

e Simple Strategy

 Theroot is expanded first, Then all its
successors, Then all their successors

e At a given depth, All nodes are expanded.
« With branching factor b, at level d, we have
1+b+b2+b3+...bd + b(bd-1) = O (b4*!) Nodes

e At level 12 with branching factor 10, we have 1013
nodes

e Space Problem !

Breadth First Search

* Expand the shallowest node

>@

Breadth First Search

» Expand the shallowest node

(4)
>(2) (9

Breadth First Search

* Expand the shallowest node

(4)
(B} >
o &

Breadth First Search

* Expand the shallowest node

()
(B) ©
>O G ® ©

BFS

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

0(bd+1)

Space complexity?

O(bd+1) : keeps every node in memory
Optimality?

Yes :finds shortest path

Remark:

If the definition of optimality is to find lowest cost
path them BFS is not optimal

Bidirectional Search

BFS in both directions
How could this help?

bd+1 VS 2b(d+1)/2
» Can reduce time complexity,
* Not always applicable
« May require lots of space
e Hard to implement

Bidirectional Search

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

O(bW+D72) b is branching factor, d is least cost to goal
Space complexity?

O(b(d+1)12)

Optimality?

yes

Uniform Cost Search

* Instead of expanding the shallowest node(like BFS),
uniform-cost search expands the node n with the lowest
path cost

» Will be optimal according to the lowest cost definition

» Uniform-cost search is guided by path costs rather than
depths, so its complexity cannot easily be characterized in
terms of b and d. If is measured in terms of the optimal
path C*

Depth First Search

« Always expand deepest node in the fringe of
the tree.

e Modest memory requirement, stores only
single path from root to leaf.

« With branching factor b, at level d, we store
only bm+1 i.e. O(bm)

It may stuck in an infinite path and never finds
solution

Depth First Search

» Expand deepest unexpanded node

>@

Depth First Search

* Expand deepest unexpanded node

(4
46 (9

Depth First Search

» Expand deepest unexpanded node

(4)
(B) ©

Depth First Search

* Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

Depth First Search

* Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

Depth First Search

* Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

4
206

Depth First Search

* Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

Depth First Search

* Expand deepest unexpanded node

DFS

Completeness?

No, fails in infinite depth spaces or spaces with loops
Yes, assuming state space finite.

Time complexity?

O(b), terrible if mis much bigger than d. can do well if
lots of goals

Space complexity?
O(bm), i.e. linear
Optimality?

No may find a solution with long path

Depth-limited Search

Put a limit to the level of the tree
DFS, only expand nodes depth < L.
Completeness?

No, if L<d.

Time complexity?

O(b*)

Space complexity?

O(bL)

Optimality?

No

lterative Deepening

 Calls depth-limited search with increasing limits until goal is

found
Limit=0 (A} e

lterative Deepening

 Calls depth-limited search with increasing limits until goal is
found

Limit=1 @ 0/@\(9 ./.\.
(26)] © IS

lterative Deepening

 Calls depth-limited search with increasing limits until goal is
found

Limit=2 »{d) (A)])]
o o
(D) 6] #(E)
(@))
+(F) ®)] #(0)

lterative Deepening

 Calls depth-limited search with increasing limits until goal is

ﬁ
@

Limit=3 @

L
o

%?f?

ﬂ“
S

lterative Deepening

. Completeness?

Yes.

Time complexity?

o) = (d+1) bo+db* + ... +b7

Space complexity?

O(bd)

Optimality?

Yes; if looking for shortest path

Remark: IDS performs much faster than BFS:

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50+ 400 + 3,000 + 20,000 + 100, 000 = 123,450
N(BFS) = 10+ 100 + 1,000 + 10,000 + 100, 000 + 999,990 = 1,111, 100

Remarks

BFS works as a queue. Pick the leftmost element of
the open list , evaluate it and add its children to the
end of the list, FIFO

DFS works as a stack. Pick the leftmost element of
the open list , evaluate it and add its children to the
beginning of the list, LIFO

Informed Search

Blind search - no notion concept of the “right direction”

- can only recognize goal once it's achieved

Heuristic search — we have rough idea of how good various
states are, and use this knowledge to guide our search

Can find solutions more efficient than
uninformed

General approach is best-first-search

A node is selected based on an evaluation
function f(n)

A node that seems to be best is picked and it
may not be the actual best

