Search Strategies

Uninformed/Blind Search
— Breadth First Search
— Depth First Search
— Depth Limited Search
— Bidirectional Search
Informed/Heuristic Search
- Hill Climbing Search (Improvements)
- A* Algorithm

Measuring problem-Solving performance

A strategy is defined by picking the order of node expansion
What makes one search scheme better than another?
Completeness: Guarantee to find a solution?

Time complexity: How long is it to find a sol. (# of nodes)?

Optimality: Does the strategy find the shortest path (note
some books use least cost)?

Space complexity: How much memory is needed (max. # of
nodes in memory)?

Notations

« b: Branching Factor that is maximum number
of successors of any node

« d : depth of the least cost solution
« C* : path cost of the optimal solution
« m : maximum depth of the state space

Breadth First Search

e Simple Strategy

« The root is expanded first, Then all its
successors, Then all their successors

e At a given depth, All nodes are expanded.
« With branching factor b, at level d, we have
1+b+b2+b3+...bd + b(bd-1) = O (bd+!) Nodes

» At level 12 with branching factor 10, we have 1013
nodes

e Space Problem !

Breadth First Search

* Expand the shallowest node

>@D.

Breadth First Search

» Expand the shallowest node

Breadth First Search

* Expand the shallowest node

Breadth First Search

* Expand the shallowest node

(4)
() ©
PO B ©® ©

BFS

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

0(bd+1)

Space complexity?

O(bd+1) keeps every node in memory
Optimality?

Yes :finds shortest path

Remark:

If the definition of optimality is to find lowest cost
path them BFS is not optimal

Bidirectional Search

BFS in both directions
How could this help?

bd+1 VS 2b(d+1)/2
« Can reduce time complexity,
* Not always applicable
» May require lots of space
* Hard to implement

Bidirectional Search

Completeness?

Yes, if solution exists, there is a guarantee to find it
Time complexity?

O(b+1"2) b is branching factor, d is least cost to goal
Space complexity?

O(b(d+l)/2)

Optimality?

yes

Depth First Search

Always expand deepest node in the fringe of
the tree.

Modest memory requirement, stores only
single path from root to leaf.

With branching factor b, at level d, we store
only bm+1 i.e. O(bm)

It may stuck in an infinite path and never finds
solution

Depth First Search

« Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

(@)

Depth First Search

« Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

Depth First Search Depth First Search

« Expand deepest unexpanded node » Expand deepest unexpanded node

Depth First Search Depth First Search

« Expand deepest unexpanded node » Expand deepest unexpanded node

Depth First Search

« Expand deepest unexpanded node

@
26

Depth First Search

» Expand deepest unexpanded node

@
©
0 @

Depth First Search

« Expand deepest unexpanded node

Depth First Search

» Expand deepest unexpanded node

DFS

Completeness?

No, fails in infinite depth spaces or spaces with loops
Yes, assuming state space finite.

Time complexity?

O(bm), terrible if mis much bigger than d. can do well if
lots of goals

Space complexity?
O(bm), i.e. linear
Optimality?

No may find a solution with long path

Depth-limited Search

Put a limit to the level of the tree
DFS, only expand nodes depth < L.
Completeness?

No, if L<d.

Time complexity?

o)

Space complexity?

O(bL)

Optimality?

No

lterative Deepening

« Calls depth-limited search with increasing limits until goal is

found
Limit=0 @]

lterative Deepening

« Calls depth-limited search with increasing limits until goal is
found

e e e e e

lterative Deepening

+ Calls depth-limited search with increasing limits until goal is
found

Limit=2 »@® @/@\O @ @
E @ ® »(B) L

lterative Deepening

« Calls depth-limited search with increasing limits until goal is

ﬁ?
s

.{i“ﬁ\
T

lterative Deepening

. Completeness?

Yes.

Time complexity?

O(t?) = (d+1) bP+db' + ...+

Space complexity?

O(bad)

Optimality?

Yes; if looking for shortest path

Remark: IDS performs much faster than BFS:
Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10+ 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111, 100

Remarks

* BFS works as a queue. Pick the leftmost element of
the open list , evaluate it and add its children to the
end of the list, FIFO

« DFS works as a stack. Pick the leftmost element of
the open list , evaluate it and add its children to the
beginning of the list, LIFO

Informed Search

Blind search - no notion concept of the “right direction”

- can only recognize goal once it's achieved

Heuristic search — we have rough idea of how good various
states are, and use this knowledge to guide our search

Can find solutions more efficient than
uninformed

General approach is best-first-search

A node is selected based on an evaluation
function f(n)

A node that seems to be best is picked and it
may not be the actual best

Best First Search

e The Idea:

— use an evaluation furrctionfor each node...
estimate of ““desirability"

— Expand most desirable unexpanded node
Implementation

— Fringe: is a queue sorted in decreasing order
of desirability

Special cases
Greedy
A*

Cost function f{(n)

= A function £ is maintained for each node

f(n) = g(n) + h(n), nis the node in the open list

= “Node chosen” for expansion is the one with least £ value
= g(n)is the cost from root S'to node 2

= /A(n)is the estimated cost from node 72 to a goal

= For BFS: =0,

= For DFS: £=0,

= For greedy g =0

Greedy search

» Expands a node it sees closest to a the goal

-)=

=« Resembles DFS in that it prefers to follow a
single path all the way to the goal

» Also suffers from the same defects of DFS, it

may stuck in a loop i.e. not complete As well
as it is not optimal.

Hill climbing

This is a greealalgorithm
Expands a node it sees closest to a goal

) =fn)

The algorithm
select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)
select N, the highest-value child of C;
return C if its value is better than the value of N;

Hill Climbing search example

© Buchamst
Arad
Bucharest
Craiova
Dabreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Straight-line distanze

Ml

153
19

Hill Climbing search example

Staight-line distance
st

Bucha
rad

Bucharest o

Craiova 160

reta 21

Eforie 161

TFagaras 6

iurgiu 7

Hirsova 151

asi 26

ugoj 244

211

EEn

e

0

193

253

B

0

Hill Climbing search example

A >

Stuaight-line distance
st

Bushay
rad
Bucharest o
Craiova 160
reta 1
Elorie 161
Fagaras 176
iurgiu m
Hirsova 151
Insi 20
ugoj 244
1
3
o
)

Hill Climbing search example

Staight-line distance
charest

Arad £
Bucharest o
Craiova 160

Eforie 16
Eagaras 17
Ginrgin b
Hirsma 151
Tasi E

Urziceni
Vashii 159
Zerind 2y

Hill Climbing search example

EQ

Strsight-line distanee
© Bucharest
Arad

186
Bucharest o
Craiova 160

Hill climbing
Complete:

No, Can get stuck in loop. Complete if loops are avoided.

Time complexity?

O(b™), but with some good heuristic, it could give better
results

Space complexity?
O(b"), keeps all nodes in memory

Optimality?
No

e.g. Arad->Sibiu>Rimnicu Virea-> Pitesti->Bucharest is
shorter!

