
12/16/2014

1

Socrates’ Example

• Socrates is a man and all men are mortal
Therefore Socrates is mortal

• Initial state

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates) (negation of theorem)

• Resolving (1) & (2) gives new state

(1)-(3) & 4) is_mortal(socrates)

Aristotle’s Example: Search Space

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) ¬is_man(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

5) False

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) ¬is_man(socrates)

5) False

12/16/2014

2

Resolution Proof Tree (Proof 1)

Resolution Proof Tree (Proof 2)

You said that all men were mortal. That means that for all things X,
either X is not a man, or X is mortal. If we assume that Socrates is
not mortal, then, given your previous statement, this means
Socrates is not a man. But you said that Socrates is a man, which
means that our assumption was false, so Socrates must be mortal.

12/16/2014

3

Example: KB

Example: KB

12/16/2014

4

Example: (CNF)

Example: Proof Tree

12/16/2014

5

Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

King(John)

Greedy(John)

Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

• King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction to propositional inference

• Every FOL KB can be propositionalized so as to preserve
entailment (A ground sentence is entailed by new KB iff
entailed by original KB)

• Idea: propositionalize KB and query, apply resolution in
PC, return result

• Problem: with function symbols, there are infinitely many
ground terms,

– e.g., Father(Father(Father(John)))

12/16/2014

6

Reduction to propositional inference

Theorem: Herbrand (1930). If a sentence α is entailed by a
FOL KB, it is entailed by a finite subset of the
propositionalized KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is

semidecidable (algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no
to every nonentailed sentence.)

Problems with propositionalization

• Propositionalization seems to generate lots of irrelevant
sentences.

• E.g., from:

• ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

King(John)

∀y Greedy(y)

Brother(Richard,John)

• it seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant

12/16/2014

7

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)

qθ

p1' is King(John) p1 is King(x)

p2' is Greedy(y) p2 is Greedy(x)

θ is {x/John,y/John} q is Evil(x)

q θ is Evil(John)

where pi'θ = pi θ for all i

Soundness and Completeness of
GMP

• GMP is sound

– Only derives sentences that are logically entailed (proof on p276
in text)

• GMP is complete for a KB consisting of definite clauses

– Complete: derives all sentences that are entailed

– OR…answers every query whose answers are entailed by such a
KB

– Definite clause: disjunction of literals of which exactly one is
positive,

– e.g., King(x) AND Greedy(x) -> Evil(x)

NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

12/16/2014

8

Forward chaining
• FC: “Idea” fire any rule whose premises are satisfied in the

KB, add its conclusion to the KB, until query is found

• Deduce new facts from axioms

• Hopefully end up deducing the theorem statement

� Can take a long time: not using the goal to direct search

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions

• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is
semidecidable

Forward chaining algorithm

12/16/2014

9

Backward chaining
• BC: “Idea” work backwards from the query q in (p�q)

check if q is already known, or

prove by BC all premises of some rule concluding q

• Start with the conclusion and work backwards

– Hope to end up at the facts from KB

• Widely used for logic programming

• PROLOG is backward chaining

Remarks:

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal has already been proved true,
or has already failed

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2,
SUBST(θ1, p))

