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First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only 

one “value” for any given “input”

Ex.: Objects: Students, lectures, companies, cars ... 

– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 

– Properties: blue, oval, even, large, ... 

– Functions: father-of, best-friend, second-half, one-more-than 

... 

Atomic Sentences
• Propositions are represented by a predicate applied to a tuple

of terms. A predicate represents a property of or relation 
between terms that can be true or false:

• Brother(John, Fred), Left-of(Square1, Square2), 
GreaterThan(plus(1,1), plus(0,1))

• Sentences in logic state facts that are true or false. 

• In FOL properties and n-ary relations do express that:

LargerThan(2,3) is false.    Brother(Mary,Pete) is false.

• Note: Functions do not state facts and form no sentence: 
Brother(Pete) refers to the object John (his brother) and is 
neither true nor false.

• Brother(Pete,Brother(Pete)) is True.  

Binary relation Function
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Constant  � A ( XI ( John 1 . . .

Variable  � a | x | s | . . .

Predicate  � Before…

Function  � Mother | …

Syntax of First-order logic

Truth in first-order logic

• Sentences are true with respect to a model and an 
interpretation

• Model contains objects (domain elements) and relations 
among them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate
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Entailment

• Entailment means that one thing follows from 
another:

KB ╞ α
Knowledge base KB entails sentence α if and only if 

α is true in all worlds where KB is true

– E.g., the KB containing “the Greens won” and “the Reds 
won” entails “Either the Greens or the reds won“

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e., 
syntax) that is based on semantics

– entailment: necessary truth of one sentence given 
another

Models

• Logicians typically think in terms of models, which are formally 
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)

– E.g. KB = Greens won and Reds
won α = Greens won

• Think of KB and α as collections of

constraints and of models m as 

possible states. M(KB) are the solutions

to KB and M(α) the solutions to α.

Then, KB ╞ α when all solutions to

KB are also solutions to α. 
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Inference in FOL chapter 9 in Russel

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true that 
KB╞ α

i.e. derivations produce only entailed sentences (no wrong 
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also 
true that KB ├i α 

i.e. derivations can produce all entailed sentences (all 
inferences can be made, but maybe some wrong extra 
ones as well)

Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and      is false) 
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Proof Methods in FOL

Major Families: 

•GMP

• Reduction

•Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/

Proof Methods in FOL

• GMP: Using the generalized form of Modus Ponense

• Reduction:  Reduce all FOL sentences to propositional Calculus 
then use inference in propositional calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause        can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of 

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →
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Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is 
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol k that 

does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant
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Unification

• ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) 

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

• To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John} or 
others…

• There are many possible unifiers for some atomic 

sentences. The first unifier is more general than 
the second.

• The UNIFY algorithm returns the most general 
unifier (MGU) that is unique up to renaming of 
variables. MGU makes the least commitment to 
variable values.

The Unification Algorithm
•In order to match sentences in the KB, we need a routine.
•UNIFY(p,q) takes two atomic sentences and returns a substitution 
that makes them equivalent.
UNIFY(p,q)= θ where SUBST(θ,p)=SUBST(θ,q) θ is called a unifier.
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The Unification Algorithm

Inference Rules for Quantifiers
• Universal Elimination: "∀v α |- SUBST({v/g}, α)”

for any sentence, α, variable, v, and ground term, g

• ∀ x Study(x, AI)  |- Study(Mary, AI)

• Existential Elimination: “∃v α |- SUBST({v/k},a)”

for any sentence, α, variable, v, and constant symbol, k, that doesn’t 
occur elsewhere in the KB (Skolem constant)

• ∃x (Owns(Mary,x) ∧∧∧∧ Cat(x)) |- Owns(Mary,Jusy)∧∧∧∧ Cat(Jusy)

• Existential Introduction: “α |- ∃ v SUBST({g/v}, α)”

for any sentence, α, variable, v, that does not occur in α, and ground 
term, g, that does occur in α

• Study(Mary, AI) |- ∃ x Study(x, AI)
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Proof Example

1) ∀ x,y(Parent(x,y) ∧∧∧∧ Male(x) ⇒ Father(x,y))

2) Parent(Tom,John)

3) Male(Tom) Using Universal Elimination from 1)

4) ∀ y(Parent(Tom,y) ∧∧∧∧ Male(Tom) ⇒ Father(Tom,y))

Using Universal Elimination from 4)

5) Parent(Tom,John) ∧∧∧∧ Male(Tom) ⇒ Father(Tom,John)

Using And Introduction from 2) and 3)

6) Parent(Tom,John) ∧∧∧∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom,John)

Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q)

qθ

where θ is a substitution such that for all i SUBST(θ, pi')=SUBST(θ, pi)

Ex.:

1) ∀ x,y(Parent(x,y) ∧ Male(x) ⇒ Father(x,y))

2) Parent(Tom,John)

3) Male(Tom)

q={x/Tom, y/John)

4) Father(Tom,John) 

where pi'θ = pi θ for all i
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• In order to Apply generalized Modus Ponens, all sentences in 
the KB must be in the form of Horn Clauses:

• where a clause is a disjunction of literals, because they can be 
rewritten as disjunctions with at most one non-negated literal. 

∀v1, v2, … , vn ( p1 ∧ p2 ∧ … ∧ pn ⇒q) can be expressed as

∀ v1, v2, … , vn ¬¬¬¬ p1 ∨∨∨∨ ¬¬¬¬ p2 ∨∨∨∨ … ∨∨∨∨ ¬¬¬¬ pn ∨∨∨∨ q

• If we have exactly one definite clause, the sentence is called a 
definite clause 

• Quantifiers can be dropped since all variables can beassumed to 
be universally quantified by default.

• Many sentences can be transformed into Horn clauses, but not 
all (e.g. P(x) ∨∨∨∨ Q(x), and ¬¬¬¬ P(x))

Generalized Modus Ponens (GMP)

Resolution

• Propositional version.

{a ∨∨∨∨ b, ¬¬¬¬b ∨∨∨∨ g} |- a ∨∨∨∨ g OR {¬¬¬¬ a ⇒ b, b ⇒ g} |- ¬¬¬¬ a ⇒ g

• Reasoning by cases OR transitivity of implication

• First-order form

• For two literals pk and ql in two clauses

p1 ∨∨∨∨ p2 ∨∨∨∨ … ∨∨∨∨ pn

q1 ∨∨∨∨ q2 ∨∨∨∨ … ∨∨∨∨ qn

such that θ =UNIFY(pk, ¬¬¬¬ ql), derives

SUBST(θ, p1 ∨∨∨∨ p2 ∨∨∨∨ … pk-1 ∨∨∨∨ pk+1 ∨∨∨∨ … ∨∨∨∨ pn ∨∨∨∨ q1 ∨∨∨∨ q2 ∨∨∨∨ … ql-1 ∨∨∨∨ ql+1 ∨∨∨∨ …∨∨∨∨ qn )

• For resolution to apply, all sentences must be in conjunctive 
normal form,
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Conjunction Normal Form (CNF)

We first rewrite                  into conjunctive normal form (CNF).  

|

:

KB

equivalent to KB unsatifiable

α

α

=

∧ ¬
We like to prove:

KB α∧ ¬

A “conjunction of disjunctions”

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

ClauseClause

literals

In theory
• Any KB can be converted into CNF.
• In fact, any KB can be converted into CNF-3, i.e. using clauses 
with at most 3 literals.

Example: Conversion to CNF (PC)

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributive law (∧ over ∨) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

( )α β α β¬ ∨ = ¬ ∧ ¬
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1. P

2. converted to 

3.

Draw the resolution tree (actually an inverted 

tree). Every node is a clausal form and branches 

are intermediate inference steps.

QP → QP ∨~

Q~

Q~

QP ∨~

P~ P

Resolution  (PC)

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find                         which is unsatisfiable. i.e. we can entail 
the query.

2. We find no contradiction: there is a model that satisfies the 
sentence

(non-trivial) and hence we cannot entail the query.

Resolution Algorithm (PC)

|KB equivalent to

KB unsatisfiable

α

α

=

∧ ¬

P P∧ ¬

KB α∧ ¬
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Resolution Algorithm in FOPC

1) Convert sentences in the KB to CNF (clausal form)
2) Take the negation of the proposed query, convert it to CNF, 
and add it to the KB.
3) Repeatedly apply the resolution rule to derive new clauses.
4) If the empty clause (False) is eventually derived, stop and
conclude that the proposed theorem is true.
Procedure:
�Eliminate implications and biconditionals
�Move ¬ inward
�Standardize variables
�Move quantifiers left
�Skolemize: replace each existentially quantified variable with a 

Skolem constant or Skolem function
�Distribute ∧ over ∨ to convert to conjunctions of clauses
�Convert clauses to implications if desired for readability

(¬ a ∨ ¬ b ∨ c ∨ d) To   a ∨ b => c ∨ d

Conversion to CNF

• Everyone who loves all animals is loved by 
someone:

∀x( [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)])

1. Eliminate biconditionals and implications

∀x([¬∀y (¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)])

2. Move ¬ inwards:”¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p“

∀x ([∃y (¬(¬Animal(y) ∨ Loves(x,y)))] ∨ [∃y Loves(y,x)] )

∀x ([∃y (¬¬Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)] )

∀x( [∃y (Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)] )
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Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x( [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)])

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing 
universally quantified variables:

∀x( [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x))

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Resolution in PC

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):

li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ ls-1 ∨ ls+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where ls and mj are complementary literals. 

E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete 
for propositional logic
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Resolution in FOL

• Full first-order version:

l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

The two clauses are assumed to be standardized apart so that they 
share no variables.

• For example, ¬Rich(x) ∨ Unhappy(x) 

Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

A More Concise Version

E.g. for A = {1, 2, 7} first clause is L1 ∨ L2 ∨ L7
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Empty Clause means False

• Resolution theorem proving ends

– When the resolved clause has no literals (empty)

• This can only be because:

– Two unit clauses were resolved 

• One was the negation of the other (after substitution)

– Example: q(X) and ¬q(X)    or:   p(X) and ¬p(bob)

• Hence if we see the empty clause

– This was because there was an inconsistency

– Hence the proof by refutation

Resolution as Search

• Initial State: Knowledge base (KB) of axioms 
and negated theorem in CNF

• Operators: Resolution rule picks 2 clauses 
and adds new clause

• Goal Test: Does KB contain the empty 
clause?

• Search space of KB states


