Game Playing

A (pure) strategy:

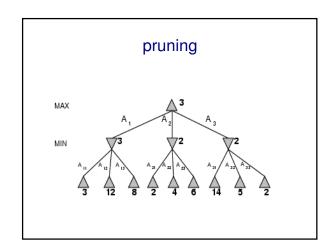
- a complete set of advance instructions that specifies a definite choice for every conceivable situation in which the player may be required to act.
- In a two-player game, a strategy allows the player to have a response to every move of the opponent.
- Game-playing programs implement a strategy as a software mechanism that supplies the right move on request.

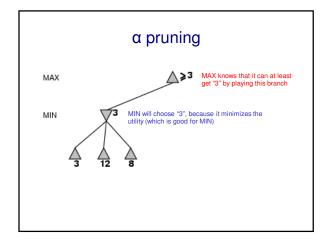
Two-Person Perfect Information Deterministic Game

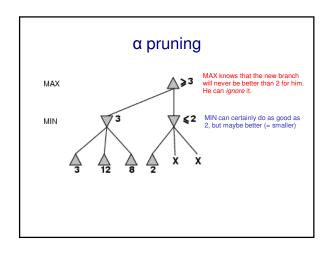
- · Two players take turns making moves
- · Call one Min and the other Max
- · Deterministic moves: Board state fully known,
- One player wins by defeating the other (or else there is a tie)
- Want a strategy to win, assuming the other person plays rationally

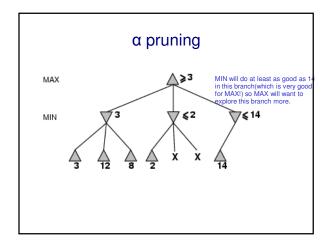
Pruning the Minimax Tree

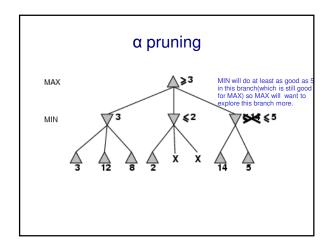
- Minimax works best for large trees, but it can be useful even in mini-games such as tic-tac-toe.
- Since we have limited time available, we want to avoid unnecessary computation in the minimax tree.
- Pruning: ways of determining that certain branches will not be useful. Then cut of these branches

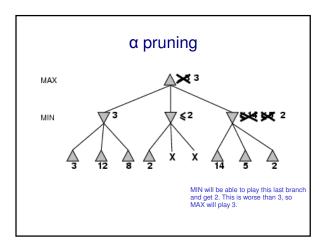






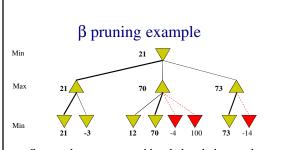






β pruning

- Similar idea to α pruning, but the other way around
- If the current minimum is less than the successor's max value, don't look down that max tree any more



• Some subtrees at second level already have values > min from previous, so we can stop evaluating them.

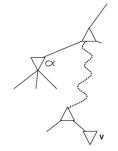
Why is it called α - β ? α is the value of the best (i.e., highest-value) choice found so far at any choice MAX point along the path for • If v is worse than α , maxMIN will avoid v

MAX

MIN

→ prune that branch

• Define $\boldsymbol{\beta}$ similarly for min



α-β Pruning properties

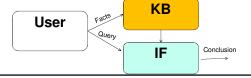
- Pruning by these cuts does not affect final result
 - May allow you to go much deeper in tree
- Properties:
 - Evaluating "best" branch first yields better likelihood of pruning later branches
 - Perfect ordering reduces time to b^{m/2}

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an rational opponent)
- <u>Time complexity?</u> O(b^m)
- Space complexity? O(bm) (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games
 → exact solution completely infeasible

Representation and Reasoning

- In order to determine appropriate actions to take, an intelligent system needs to represent information about the world and draw conclusions based on general world knowledge and specific facts.
- Knowledge is represented by sentences in some language stored in a knowledge base (KB).
- A system draws conclusions from the KB to answer questions, take actions using Inference Engine (IF).



Knowledge Representation

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax: defines the sentences in the language
- **Semantics:** define the "meaning" of sentences: i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $-x+2 \ge y$ is a sentence; $x2+y > \{\}$ is not a sentence syntax
 - $x+2 \ge y$ is true in a world where x = 7, y = 1
- $-x+2 \ge y$ is false in a world where x = 0, y = 6

Inference

 Logical Inference (deduction) derives new sentences in the language from existing ones,.

Socrates is a man.

All men are mortal.

Socrates is mortal.

Proper inference should only derive sound conclusions

Logics

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax: defines the sentences in the language
- Semantics: define the "meaning" of sentences: i.e., define true of a sentence in a world

Examples of Types of Logics

Language	What exist	Degree of belief of an Agent
Propositional Logic	Facts	{o,1} T or F
First Order Logic	Facts, Objects, Relations	{0,1} T or F
Temporal Logic	Facts, Objects, Relations, Time	{0,1} T or F
Probability Theory	Facts	Chances of belief [0,1]
Fuzzy Logic	Degree of truth about Facts	Degree of belief [0,1]

Propositional calculus & First-order logic

- Propositional logic assumes world contains facts.
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, ...
- Relations: red, round, prime,...
- Functions: fatherof, friend, in,...
- Propositional calculus $A \wedge B \Rightarrow C$
- First-order predicate calculus (∀ x)(∃ y) Mother(y,x)

Syntax of PC

- Connectives: ¬, ∧, ∨, ⇒
- Propositional symbols, e.g., P, Q, R, ...
 - True, False
 - Syntax of PC
- sentence → atomic sentence | complex sentence
- atomic sentence → Propositional symbol, *True*, *False*
- Complex sentence → ¬sentence
 (sentence ∧ sentence)
 (sentence ∨ sentence)
 (sentence ⇒ sentence)
 - Rules of Inference:
 - Ex: Modus ponens

Semantics of PC

Α	В	٦A	A A B	ΑvΒ	A⇒B
True	True	False	True	True	True
True	False	False	False	True	False
False	False	True	False	False	True
False	True	True	False	True	True

Validity and Inference

- An Interpretation is an assignment of a truth value (True or False) to each atomic proposition
- A sentence that is true under all interpretation is valid (i.e. tautology)
- · Validity can be checked by the truth table
- Inference can be done by checking the validity of each sentence. (may be applying truth table)
- An alternative to checking all rows of a truth table, one can use rules of inference to draw conclusions.

Rules of Inference

- A sequence of inference rule applications that leads to a desired conclusion is called a **logical proof.**
- A |- B , denotes that B can be derived by some inference procedure from the set of sentences A.
- Inference rules can be verified by the truth-table
- · Then used to construct sound proofs.
- Finding a proof is simply a search problem with the inference rules as operators and the conclusion as the goal

Rules of Inference

•Modus Ponens: $\{\alpha \Rightarrow \beta, \alpha\} \mid -\beta$

•And Elimination: $\{\alpha \land \beta\} \mid \neg \alpha; \quad \{\alpha \land \beta\} \mid \neg \beta$

•Double negation Elimination: {—α} |– α

•Implication Elimination $\{\alpha \Rightarrow \beta\} \mid \neg \alpha \lor \beta$

•Unit resolution: $\{\alpha \lor \beta, \neg \beta\} \models \alpha$

•Resolution: $\{\alpha \lor \beta, \neg \beta \lor \gamma\} \mid -\alpha \lor \gamma$

Models and Entailment

- A model is any interpretation in which a statement is true.
- A sentence A entails B (A | B) if every model of A is Also a model of B. i.e. if A is true then B must be true
- A statement B is entailed from some KB if there is a logical inference to deduce B

KB ⊨ B if KB→B

Satisfiability

- A sentence is satisfiable if it is true under some interpretation (i.e. it has a model), otherwise the sentence is unsatisfiable.
- A sentence is valid if and only if its negation is unsatisfiable.
- •Therefore, algorithms for either validity or satisfiability
- · checking are useful for logical inference.
- If there are *n propositional symbols in a sentence, then* we must check 2ⁿ rows for validity
- **Satisfiability is** NP-complete, i.e. there is no polynomial-time algorithm to solve.
- Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic is compositional:
 meaning of A ^ B is derived from meaning of A and B
- ✓ Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
- > Propositional logic has very limited expressive power
- (unlike natural language)

Propositional logic is a weak language

- Hard to identify "individuals." Ex. Mary, 3
- Can't directly talk about properties of individuals or relations between individuals. Ex. "Bill is tall"
- Generalizations, patterns, regularities can't easily be represented. Ex. all triangles have 3 sides
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of situation.
 - FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": \forall x (elephant(x) \rightarrow gray(x))
 - "There is a white elephant": $\exists x \text{ (elephant(x) } \land \text{ white(x))}$

First-order logic

- · First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

Ex:Objects: Students, lectures, companies, cars ...

- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- $-\,$ Properties: blue, oval, even, large, \dots
- $\ \ Functions: father-of, best-friend, second-half, one-more-than$

...

FOL Syntax

- · Variable symbols
 - E.g., x, y, John
- Connectives: ¬, ∧, ∨, ⇒
 - Quantifiers
 - Universal ∀x
 - Existential ∃x

FOL Syntax

```
Sentence → Atomicsentence

| (Sentence Connective Sentence)
| Quantifier Variable,... Sentence
| Sentence

AtomicSentence → Predicate(Term,...)
| (Term = Term

Term → Function(Term,...)
| Constant
| Variable

Connective → ¬, ∧, ∨, ⇒

Quantifier → ∀, ∃

Constant → A(XI (John 1...

Variable → a|x|s|...

Predicate → Before...

Function → Mother|...
```

Nested Quantifiers

• Combinations of universal and existential quantification are possible:

```
\forall x \forall y \ Father(x,y) \equiv \forall y \forall x \ Father(x,y)
\exists x \exists y \ Father(x,y) \equiv \exists y \exists x \ Father(x,y)
\forall x \exists y \ Father(x,y) \neq \exists y \forall x \ Father(x,y)
\exists x \forall y \ Father(x,y) \neq \forall y \exists x \ Father(x,y)
x,y \in \{AII \ people\}
```

Logical equivalence in PC

- Two sentences are logically equivalent iff true in same models: $\alpha \equiv \beta$ iff $\alpha \not\models \beta$ and $\beta \not\models \alpha$
- EXamples:

```
\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}
```

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with $\forall\colon$
- Fy.

```
\forall x \ At(x,CU) \land Smart(x) means "Everyone is at CU and everyone is smart"
```

```
Yet to say Everyone at CU is smart \forall x \text{ At}(x,CU) \Rightarrow \text{Smart}(x)
```

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using ⇒ as the main connective with ∃:

```
\exists x \, At(x,CU) \Rightarrow Smart(x)
```

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart $\exists x \operatorname{At}(x,CU) \land \operatorname{Smart}(x)$

Properties of quantifiers

 $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$ $\exists x \exists y \text{ is the same as } \exists y \exists x$

 $\exists x \ \forall y \ \text{is not the same as} \ \forall y \ \exists x$

∃x ∀y Loves(x,y)

— "There is a person who loves everyone in the world" ∀y ∃x Loves(x,y)

- "Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other Negation

 $\forall x \text{ Likes}(x, \text{IceCream}) \quad \exists x \neg \text{Likes}(x, \text{IceCream})$ ∃x Likes(x,Broccoli) ∀x ¬Likes(x,Broccoli)

 $term_1 = term_2$ is true under a given interpretation if and only if term, and term, refer to the same object

Equality

FOPC can include equality as a primitive predicate or require it to be as identity relation

Equal(x,y) or x=y

Examples:

to say "that Mary is taking two courses", you need to insure that x,y are different

 $\exists x \exists y \text{ (takes(Mary,x) } \land \text{ takes (Mary,y) } \land \sim (x=y))$

To say "Everyone has exactly one father"

 $\forall x \exists y \text{ father}(y,x) \land \forall z \text{ father}(z,x) \rightarrow y=z$

Higher Order Logic

• FOPC is called first order because it allows quantifiers to rang only over objects (terms).

 $\forall x, \forall y [x=y \text{ or } x>y \text{ or } y>x]$

• Second-Order Logic allows quantifiers to range over predicates and functions as well

 $\forall f, \forall g [f=g \iff (\forall x f(x)=g(x))]$

• Third-Order Logic allows quantifiers to range over predicates of predicates,.. etc

Examples of FOPC

· Brothers are siblings

 $\forall x, \forall y \; Brother(x,y) \Rightarrow Sibling(x,y)$

· One's mother is one's female parent

 $\forall m, \forall c \; Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m,c))$

• "Sibling" is symmetric

 $\forall \mathsf{x},\,\forall \mathsf{y}\,\, Sibling(\mathsf{x},\!\mathsf{y}) \Leftrightarrow Sibling(\mathsf{y},\!\mathsf{x})$

Translating English to FOL

Every gardener likes the sun.
 (∀x) gardener(x) => likes(x, Sun)

Translating English to FOL

- Every gardener likes the sun.
 (∀x) gardener(x) ⇒ likes(x,Sun)

You can fool some of the people all of the time. $(\exists x) \ person(x) \ ^ ((\forall t) \ time(t)) \Rightarrow can-fool(x,t))$

Translating English to FOL

- Every gardener likes the sun.
 (∀x) gardener(x) ⇒ likes(x, Sun)
- You can fool some of the people all of the time. $(\exists x) \ person(x) \ ^ ((\forall t) \ time(t)) \implies can-fool(x,t))$
- You can fool all of the people some of the time. $(\forall x) \text{ person}(x) \Rightarrow ((\exists t) \text{ time}(t) ^ can-fool}(x,t))$

Translating English to FOL

- Every gardener likes the sun.
 (∀x) gardener(x) ⇒ likes(x, Sun)
- You can fool some of the people all of the time. $(\exists x) \ person(x) \ ^ ((\forall t) \ time(t)) \Rightarrow can-fool(x,t))$
- You can fool all of the people some of the time. $(\forall x) \ \text{person}(x) \ \Rightarrow \ ((\exists t) \ \text{time}(t) \ ^ \text{can-fool}(x,t))$
- All purple mushrooms are poisonous. $(\forall \ x) \ (\texttt{mushroom}(x) \ ^p \texttt{purple}(x)) \ \Rightarrow \ \texttt{poisonous}(x)$

Translating English to FOL

- Every gardener likes the sun. $(\forall x) \text{ gardener}(x) \Rightarrow \text{likes}(x, \text{Sun})$
- You can fool some of the people all of the time. $(\exists \mathtt{x}) \ \mathsf{person}(\mathtt{x}) \ ^ \wedge \ ((\forall \mathtt{t}) \ \mathsf{time}(\mathtt{t})) \ \Rightarrow \ \mathsf{can-fool}(\mathtt{x},\mathtt{t}))$
- You can fool all of the people some of the time. $(\forall \mathbf{x}) \ \ \mathsf{person}\, (\mathbf{x}) \ \ \Rightarrow \ \ ((\exists \mathtt{t}) \ \ \mathsf{time}\, (\mathtt{t}) \ \ ^ \ \ \mathsf{can-fool}\, (\mathbf{x},\mathtt{t}))$
- · All purple mushrooms are poisonous. $(\forall x)$ (mushroom(x) ^ purple(x)) => poisonous(x)
- No purple mushroom is poisonous.

 ~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x)
 or, equivalently,
 (∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x)

Translating English to FOL

- Every gardener likes the sun. $(\forall x)$ gardener(x) => likes(x, Sun)
- You can fool some of the people all of the time. $(\exists x) \ person(x) \ ^ \wedge \ ((\forall t) \ time(t)) \ \Rightarrow \ can-fool(x,t))$
- You can fool all of the people some of the time. $(\forall x) \ person(x) \ \Rightarrow \ ((\exists t) \ time(t) \ ^ can-fool(x,t))$
- All purple mushrooms are poisonous.
- $(\forall x)$ (mushroom(x) ^ purple(x)) => poisonous(x)
- No purple mushroom is poisonous.
 ~(=|x|) purple(x) ^ mushroom(x) ^ poisonous(x)
 or, equivalently,
 ("x) (mushroom(x) ^ purple(x)) => ~poisonous(x)
- There are exactly two purple mushrooms. $(\exists x) (\exists y) \text{ mushroom}(x) ^ \text{purple}(x) ^ \text{mushroom}(y) ^ \text{purple}(y) ^ \sim (x=y) ^ (\forall z) \text{ (mushroom}(z) ^ \text{purple}(z))$ $\Rightarrow ((x=z) \text{ v} (y=z))$