
12/3/2014

1

Game Playing

A (pure) strategy:

a complete set of advance instructions that specifies a
definite choice for every conceivable situation in
which the player may be required to act.

In a two-player game, a strategy allows the player to
have a response to every move of the opponent.

Game-playing programs implement a strategy as a
software mechanism that supplies the right move on
request.

Two-Person Perfect Information

Deterministic Game

• Two players take turns making moves

• Call one Min and the other Max

• Deterministic moves: Board state fully known,

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays

rationally

Pruning the Minimax Tree

� Minimax works best for large trees, but it can be useful

even in mini-games such as tic-tac-toe.

� Since we have limited time available, we want to

avoid unnecessary computation in the minimax tree.

� Pruning: ways of determining that certain branches

will not be useful. Then cut of these branches

pruning

α pruning

MAX knows that it can at least
get “3” by playing this branch

MIN will choose “3”, because it minimizes the
utility (which is good for MIN)

α pruning

MAX knows that the new branch
will never be better than 2 for him.
He can ignore it.

MIN can certainly do as good as
2, but maybe better (= smaller)

12/3/2014

2

α pruning

MIN will do at least as good as 14
in this branch(which is very good
for MAX!) so MAX will want to
explore this branch more.

α pruning

MIN will do at least as good as 5
in this branch(which is still good
for MAX) so MAX will want to
explore this branch more.

α pruning

MIN will be able to play this last branch
and get 2. This is worse than 3, so
MAX will play 3.

β pruning

• Similar idea to α pruning, but the other way around

• If the current minimum is less than the successor’s

max value, don’t look down that max tree any more

β pruning example

• Some subtrees at second level already have values >

min from previous, so we can stop evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73

Why is it called α-β?

• α is the value of the best
(i.e., highest-value) choice
found so far at any choice
point along the path for
max

• If v is worse than α, max
will avoid v

� prune that branch

• Define β similarly for min

12/3/2014

3

α-β Pruning properties

• Pruning by these cuts does not affect final result

– May allow you to go much deeper in tree

• Properties:

– Evaluating “best” branch first yields better likelihood
of pruning later branches

– Perfect ordering reduces time to bm/2

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an rational opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
� exact solution completely infeasible

Representation and Reasoning

• In order to determine appropriate actions to take, an
intelligent system needs to represent information
about the world and draw conclusions based on
general world knowledge and specific facts.

• Knowledge is represented by sentences in some
language stored in a knowledge base (KB).

• A system draws conclusions from the KB to answer
questions, take actions using Inference Engine (IF).

User

IF

KB

Conclusion

Knowledge Representation

• Logics are formal languages for representing
information such that conclusions can be drawn

• Syntax: defines the sentences in the language

• Semantics: define the “meaning” of sentences: i.e.,
define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ≥ y is a sentence; x2+y > {} is not a sentence
syntax

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6

se
m

a
n
tic

s

Inference

• Logical Inference (deduction) derives new
sentences in the language from existing ones,.

Socrates is a man.

All men are mortal.

Socrates is mortal.

• Proper inference should only derive sound
conclusions

Logics

• Logics are formal languages for representing
information such that conclusions can be drawn

• Syntax: defines the sentences in the language

• Semantics: define the “meaning” of sentences: i.e.,
define true of a sentence in a world

12/3/2014

4

Examples of Types of Logics

Language What exist Degree of belief of

an Agent

Propositional Logic Facts {o,1} T or F

First Order Logic Facts, Objects,

Relations

{o,1} T or F

Temporal Logic Facts, Objects,

Relations, Time

{o,1} T or F

Probability Theory Facts Chances of belief

[0,1]

Fuzzy Logic Degree of truth about

Facts

Degree of belief

[0,1]

Propositional calculus & First-order logic

• Propositional logic assumes world contains facts.

• First-order logic (like natural language) assumes the
world contains

� Objects: people, houses, numbers, …

� Relations: red, round, prime,…

� Functions: fatherof, friend, in,…

• Propositional calculus
A ∧ B ⇒ C

• First-order predicate calculus
(∀ x)(∃ y) Mother(y,x)

Syntax of PC

• Connectives: ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

• Propositional symbols, e.g., P, Q, R, …

– True, False

– Syntax of PC

• sentence � atomic sentence | complex sentence

• atomic sentence � Propositional symbol, True, False

• Complex sentence � ¬¬¬¬sentence
| (sentence ∧∧∧∧ sentence)
| (sentence ∨∨∨∨ sentence)
| (sentence ⇒⇒⇒⇒ sentence)

– Rules of Inference:

– Ex: Modus ponens

Semantics of PC

A B ¬¬¬¬ A A ∧∧∧∧ B A ∨∨∨∨ B A ⇒⇒⇒⇒ B

True True False True True True

True False False False True False

False False True False False True

False True True False True True

Validity and Inference

• An Interpretation is an assignment of a truth value

(True or False) to each atomic proposition

• A sentence that is true under all interpretation is valid

(i.e. tautology)

• Validity can be checked by the truth table

• Inference can be done by checking the validity of each

sentence. (may be applying truth table)

• An alternative to checking all rows of a truth table, one

can use rules of inference to draw conclusions.

Rules of Inference

• A sequence of inference rule applications that leads to

a desired conclusion is called a logical proof.

• A |- B , denotes that B can be derived by some

inference procedure from the set of sentences A.

• Inference rules can be verified by the truth-table

• Then used to construct sound proofs.

• Finding a proof is simply a search problem with the

inference rules as operators and the conclusion as the

goal

12/3/2014

5

Rules of Inference

•Modus Ponens:

•And Elimination:

•Double negation Elimination:

•Implication Elimination:

•Unit resolution:

•Resolution:

Models and Entailment

• A model is any interpretation in which a statement is

true.

• A sentence A entails B (A ╞ B) if every model of A is

Also a model of B. i.e. if A is true then B must be true

• A statement B is entailed from some KB if there is a

logical inference to deduce B

KB ╞ B if KB�B

Satisfiability
• A sentence is satisfiable if it is true under some

interpretation (i.e. it has a model), otherwise the

sentence is unsatisfiable.

• A sentence is valid if and only if its negation is

unsatisfiable.

• •Therefore, algorithms for either validity or satisfiability

• checking are useful for logical inference.

• If there are n propositional symbols in a sentence, then
we must check 2n rows for validity

• Satisfiability is NP-complete, i.e. there is no

polynomial-time algorithm to solve.

• Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

� Propositional logic is declarative:

pieces of syntax correspond to facts

� Propositional logic is compositional:

meaning of A ^ B is derived from meaning of A and B

� Meaning in propositional logic is context-independent

• (unlike natural language, where meaning depends on
context)

� Propositional logic has very limited expressive power

• (unlike natural language)

Propositional logic is a weak language

� Hard to identify “individuals.” Ex. Mary, 3

� Can’t directly talk about properties of individuals or

relations between individuals. Ex. “Bill is tall”

� Generalizations, patterns, regularities can’t easily be

represented. Ex. all triangles have 3 sides

• First-Order Logic (abbreviated FOL or FOPC) is

expressive enough to concisely represent this kind of

situation.

– FOL adds relations, variables, and quantifiers, e.g.,

• “Every elephant is gray”: ∀ x (elephant(x) → gray(x))

• “There is a white elephant”: ∃ x (elephant(x) ̂ white(x))

First-order logic
• First-order logic (FOL) models the world in terms of

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only

one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ...

– Relations: Brother-of, bigger-than, outside, part-of, has-color,

occurs-after, owns, visits, precedes, ...

– Properties: blue, oval, even, large, ...

– Functions: father-of, best-friend, second-half, one-more-than

...

12/3/2014

6

FOL Syntax

• Variable symbols

– E.g., x, y, John

• Connectives: ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

– Quantifiers

– Universal ∀x

– Existential ∃x

Sentence � Atomicsentence

| (Sentence Connective Sentence)

| Quantifier Variable,. . . Sentence

| Sentence

AtomicSentence � Predicate(Term, . . .)

| (Term = Term

Term -� Function(Term, . . .)

I Constant

| Variable

Connective � ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

Quantifier � ∀, ∃

Constant � A (XI (John 1 . . .

Variable � a | x | s | . . .

Predicate � Before…

Function � Mother | …

FOL Syntax

Nested Quantifiers

• Combinations of universal and existential quantification
are possible:

(,) (,)

(,) (,)

(,) (,)

(,) (,)

, { }

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y All people

∀ ∀ ≡ ∀ ∀

∃ ∃ ≡ ∃ ∃

∀ ∃ ≠ ∃ ∀

∃ ∀ ≠ ∀ ∃

∈
Binary relation:
“x is a father of y”.

Logical equivalence in PC
• Two sentences are logically equivalent iff true in same models:
α ≡ ß iff α╞ β and β╞ α

• EXamples:

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective
with ∀:

• Ex:

∀x At(x,CU) ∧ Smart(x)

means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart

∀x At(x,CU) ⇒ Smart(x)

Another common mistake to avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective
with ∃:

∃x At(x,CU) ⇒ Smart(x)

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart

∃x At(x,CU) ∧ Smart(x)

12/3/2014

7

Properties of quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)

– “There is a person who loves everyone in the world”
∀y ∃x Loves(x,y)

– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other
Exp. Negation

∀x Likes(x,IceCream) ∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ∀x ¬Likes(x,Broccoli)

Equality
Equality:

term1 = term2 is true under a given interpretation if and only

if term1 and term2 refer to the same object

FOPC can include equality as a primitive predicate or require

it to be as identity relation

Equal(x,y) or x=y

Examples:

to say “that Mary is taking two courses”, you need to insure

that x,y are different

∃x ∃y (takes(Mary,x) ^ takes (Mary,y) ^ ~ (x=y))

To say “Everyone has exactly one father”

∀x ∃y father(y,x) ^ ∀z father(z,x) � y=z

Higher Order Logic

• FOPC is called first order because it allows quantifiers to

rang only over objects (terms).

∀x, ∀y [x=y or x>y or y>x]

• Second-Order Logic allows quantifiers to range over

predicates and functions as well

∀f, ∀g [f=g <=> (∀x f(x)=g(x))]

• Third-Order Logic allows quantifiers to range over

predicates of predicates,.. etc

Examples of FOPC

• Brothers are siblings

∀x, ∀y Brother(x,y) => Sibling(x,y)

• One's mother is one's female parent

∀m, ∀c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

• “Sibling” is symmetric

∀x, ∀y Sibling(x,y) ⇔ Sibling(y,x)

Some may be considered axioms, others as theorems which can be derived
from the axioms.

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.
(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

12/3/2014

8

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.
(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.
(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.
(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.
(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.
(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.
(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.
(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.
(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

• No purple mushroom is poisonous.
~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x)
or, equivalently,
(∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x)

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.
(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.
(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.
(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

• No purple mushroom is poisonous.
~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x)
or, equivalently,
(∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x)

• There are exactly two purple mushrooms.
(∃x)(∃ y) mushroom(x) ^ purple(x) ^ mushroom(y) ^
purple(y) ^ ~(x=y) ^ (∀z) (mushroom(z) ^ purple(z))
=> ((x=z) v (y=z))

