Game Playing

A (pure) strategy:

a complete set of advance instructions that specifies a
definite choice for every conceivable situation in
which the player may be required to act.

In a two-player game, a strategy allows the player to
have a response to every move of the opponent.

Game-playing programs implement a strategy as a
software mechanism that supplies the right move on
request.

Two-Person Perfect Information
Deterministic Game

Two players take turns making moves

Call one Min and the other Max

Deterministic moves: Board state fully known,

One player wins by defeating the other (or else there is a tie)

‘Want a strategy to win, assuming the other person plays
rationally

Pruning the Minimax Tree

e Minimax works best for large trees, but it can be useful
even in mini-games such as tic-tac-toe.

e Since we have limited time available, we want to

avoid unnecessary computation in the minimax tree.

e Pruning: ways of determining that certain branches
will not be useful. Then cut of these branches

pruning

MAK

MIN

MAK 23 MAXknows that it can at least
get “3” by playing this branch
MIN MIN will choose “3”, because it minimizes the

utility (which is good for MIN)

MAX knows that the new branch
MAX will never be better than 2 for him.
He can ignore it.
MIN MIN can certainly do as good as

2, but maybe better (= smaller)

a pruning

a pruning

MK MIN will do at least as good as §
in this branch(which is still good
for MAX) so MAX will want to
explore this branch more.

MIN SE S

B pruning

« Similar idea to o pruning, but the other way around

e If the current minimum is less than the successor’s
max value, don’t look down that max tree any more

MAX MIN will do at least as good as 1
in this branch(which is very good|
for MAX!) so MAX will want to

xplore this branch more.

(I €14

a pruning
WAX >3
I
MIN will be able to play this last branch
and get 2. This is worse than 3, so
MAX will play 3.
B pruning example
Min
Max
Min ' ' '
21 -3 12 70 -4 100 73 -14

» Some subtrees at second level already have values >
min from previous, so we can stop evaluating them.

Why is it called a-3?

« ais the value of the best
(i.e., highest-value) choice
found so far at any choice
point along the path for
max

e If vis worse than a, max MIN
will avoid v

- prune that branch

 Define B similarly for min

z

AX

MAX

MIN v

o-B Pruning properties

* Pruning by these cuts does not affect final result
— May allow you to go much deeper in tree
* Properties:

- Evaluating “best” branch first yields better likelihood
of pruning later branches

— Perfect ordering reduces time to b™?

Properties of minimax

Complete? Yes (if tree is finite)

Optimal? Yes (against an rational opponent)
Time complexity? O(b™)

Space complexity? O(bm) (depth-first exploration)

For chess, b = 35, m =100 for "reasonable" games
-> exact solution completely infeasible

Representation and Reasoning

« In order to determine appropriate actions to take, an
intelligent system needs to represent information
about the world and draw conclusions based on
general world knowledge and specific facts.

« Knowledge is represented by sentences in some
language stored in a knowledge base (KB).

« A system draws conclusions from the KB to answer
questions, take actions using Inference Engine (IF).

< o= “

Query
I F Conclusion

-

Knowledge Representation

Logics are formal languages for representing
information such that conclusions can be drawn

Syntax: defines the sentences in the language

Semantics: define the “meaning” of sentences: i.e.,
define truth of a sentence in a world
E.g., the language of arithmetic

- x+2 2y is a sentence; x2+y > {} is not a sentence
syntax

- x+2 2yistrueinaworld wherex =7,y =1
- x+2 2 yisfalse in a world wherex =0,y = 6 }

sonuewaes

Inference

« Logical Inference (deduction) derives new
sentences in the language from existing ones,.

Socrates is a man.
All men are mortal.
Socrates is mortal.

« Proper inference should only derive sound
conclusions

Logics

Logics are formal languages for representing
information such that conclusions can be drawn

» Syntax: defines the sentences in the language

* Semantics: define the “meaning” of sentences: i.e.,
define true of a sentence in a world

Examples of Types of Logics

Language Degree of belief of
an Agent

Propositional Logic Facts {o,1} TorF

First Order Logic Facts, Objects, {o,1} TorF
Relations

Temporal Logic Facts, Objects, {0,1} TorF

Relations, Time
Probability Theory Facts Chances of belief
[0.1]
Degree of truth about Degree of belief
Facts [0,1]

Fuzzy Logic

Propositional calculus & First-order logic

Propositional logic assumes world contains facts.

First-order logic (like natural language) assumes the
world contains

= Objects: people, houses, numbers, ...
Relations: red, round, prime,...
Functions: fatherof, friend, in,...

» Propositional calculus
AAB=C

» First-order predicate calculus
(V¥ x)(3 y) Mother(y,x)

Syntax of PC

e Connectives: =, A, v, =
« Propositional symbols, e.g., P, Q, R, ...

— True, False
- Syntax of PC

» sentence - atomic sentence | complex sentence
« atomic sentence > Propositional symbol, 7rue, False
« Complex sentence - —sentence

sentence A sentence
sentence v sentence
sentence = sentence)

- Rules of Inference:
— Ex: Modus ponens

Semantics of PC

A B - A AAB |AvB |A=B

True True False True True True

True False False False True False

False False True False | False True

False True True False True True

Validity and Inference

An Interpretation is an assignment of a truth value
(True or False) to each atomic proposition

A sentence that is true under all interpretation is valid
(i.e. tautology)

Validity can be checked by the truth table

Inference can be done by checking the validity of each
sentence. (may be applying truth table)

An alternative to checking all rows of a truth table, one
can use rules of inference to draw conclusions.

Rules of Inference

A sequence of inference rule applications that leads to
a desired conclusion is called a logical proof.

A |- B, denotes that B can be derived by some
inference procedure from the set of sentences A.

Inference rules can be verified by the truth-table
Then used to construct sound proofs.

Finding a proof is simply a search problem with the
inference rules as operators and the conclusion as the
goal

Rules of Inference

*Modus P :
odus Ponens e B ol |-B

«And Elimination: (Ao {aapt-B

+Double negation Elimination: |——u] |-«
+Implication Elimination {¢ = B} |- —ct v
+Unit resolution: 1 B, —f} |- o

Resolution: 1, ., g —p vy

Models and Entailment

« A model is any interpretation in which a statement is
true.

+ A sentence A entails B (A k B) if every model of A is
Also a model of B. i.e. if A is true then B must be true

« A statement B is entailed from some KB if there is a
logical inference to deduce B

KB kB if KB>B

Satisfiability

« A sentence is satisfiable if it is true under some
interpretation (i.e. it has a model), otherwise the
sentence is unsatisfiable.

« A sentence is valid if and only if its negation is
unsatisfiable.

« eTherefore, algorithms for either validity or satisfiability
« checking are useful for logical inference.

« If there are n propositional symbols in a sentence, then
we must check 27 rows for validity

« Satisfiability is NP-complete, i.e. there is no
polynomial-time algorithm to solve.

« Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

v Propositional logic is declarative:

pieces of syntax correspond to facts
v Propositional logic is compositional:

meaning of A * B is derived from meaning of A and B
v Meaning in propositional logic is context-independent

e (unlike natural language, where meaning depends on
context)

» Propositional logic has very limited expressive power
* (unlike natural language)

Propositional logic is a weak language
= Hard to identify “individuals.” Ex. Mary, 3

Can't directly talk about properties of individuals or
relations between individuals. Ex. “Bill is tall”

Generalizations, patterns, regularities can't easily be
represented. Ex. all triangles have 3 sides

« First-Order Logic (abbreviated FOL or FOPC) is
expressive enough to concisely represent this kind of
situation.

— FOL adds relations, variables, and quantifiers, e.g.,
« “Every elephant is gray”: Vv x (elephant(x) — gray(x))

« “There is a white elephant”: 3 x (elephant(x) ~ white(x))

First-order logic
« First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects

- Functions, which are a subset of relations where there is only
one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ...

- Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

- Properties: blue, oval, even, large, ...

- Functions: father-of, best-friend, second-half, one-more-than

FOL Syntax

« Variable symbols
- E.g., x, ¥, John
» Connectives: —, A, v, =
- Quantifiers
— Universal Vx
- Existential 3x

FOL Syntax

Sentence > Atomicsentence

| (Sentence Connective Sentence)

| Quantifier Variable,. . . Sentence

| Sentence
AtomicSentence -> Predicate(Term, . . .)

| (Term= Term
Term--> Function(Term, . . .)
| Constant
| Variable

Connective > =, A, v, =
Quantifier > v, 3
Constant > A(XI(John1 ...
Variable > a|x|s]|...
Predicate - Before...
Function > Mother| ...

Nested Quantifiers

« Combinations of universal and existential quantification
are possible:
VxVy Father(x,y) = VyNx Father(x,y)
Ax3y Father(x,y) = yax Father(x,y)
Vx3y Father(x,y)+# 3yNx Father(x,y)
AxVy Father(x,y) # Y y3x Father(x,y)
x,y € {All people}

Logical equivalence in PC

» Two sentences are logically equivalent iff true in same models:
asBiffafpand Bfa

» EXamples:
(A B) = (BAa) commutativity of A
(aVP) = (BVa) commutativity of V
((aAB)Av) = (an(BA7)) associativity of A
((avB)Vvy) = (v (BV7y)) associativity of V
—(-a) = a double-negation elimination
(@« = B) = (=B = —a) contraposition
(@ = fB) = (—aVvP3) implication elimination
(¢ & B) = ((@ = B)A(B = a)) biconditional elimination
(A B) = (naV—f8) de Morgan
“(aVp) = (ran—B) de Morgan
(@n(BVy) = ((@aAB)V(aeAy)) distributivity of A over V
(@V(BAy) = ((aVB)A(aVy)) distributivity of V over A

A common mistake to avoid

» Typically, = is the main connective with ¥

« Common mistake: using A as the main connective
with V:

e Ex:
vx At(x,CU) A Smart(x)
means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart
vx At(x,CU) = Smart(x)

Another common mistake to avoid

» Typically, A is the main connective with 3

» Common mistake: using = as the main connective
with 3:

Ix At(x,CU) = Smart(x)
is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart
Ix At(x,CU) A Smart(x)

Properties of quantifiers

VX Vy is the same as Vy Vx
3x Jy is the same as Jy Ix

3x Vy is not the same as Vy 3Ix
3Ix vy Loves(x,y)

— “There is a person who loves everyone in the world”
Vy 3x Loves(x,y)

— “Everyone in the world is loved by at least one person”

« Quantifier duality: each can be expressed using the other
Exp. Negation

vx Likes(x,lceCream) 3x —Likes(x,lceCream)

Ix Likes(x,Broccoli) Vx —Likes(x,Broccoli)

Equality

Equality:
term, = term,is true under a given interpretation if and only
if term; and term, refer to the same object

FOPC can include equality as a primitive predicate or require
it to be as identity relation

Equal(x,y) or x=y
Examples:

to say “that Mary is taking two courses”, you need to insure
that x,y are different

Ix Jy (takes(Mary,x) ~ takes (Mary,y) ~ ~ (x=y))

To say “Everyone has exactly one father”

Vx 3y father(y,x) » vz father(z,x) & y=z

Higher Order Logic
« FOPC is called first order because it allows quantifiers to
rang only over objects (terms).
VX, VY [x=y or x>y or y>x]

« Second-Order Logic allows quantifiers to range over
predicates and functions as well

vf, vg [f=g <=> (vx f(x)=g(x))]

« Third-Order Logic allows quantifiers to range over
predicates of predicates,.. etc

Examples of FOPC

« Brothers are siblings
VX, Vy Brother(x,y) => Sibling(x,y)

* One's mother is one's female parent
Vvm, V¢ Mother(c) = m < (Female(m) A Parent(m,c))

» “Sibling” is symmetric
Vx, Vy Sibling(x,y) < Sibling(y,x)

Translating English to FOL

« Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

Translating English to FOL
« Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

+ You can fool some of the people all of the time.
(3x) person(x) * ((Vt) time(t)) => can-fool(x,t))

Translating English to FOL

Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

You can fool some of the people all of the time.
(3x) person(x) * ((Vt) time(t)) => can-fool(x,t))

You can fool all of the people some of the time.
(Vx) person(x) => ((Jt) time(t) * can-fool (x,t))

Translating English to FOL

Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

You can fool some of the people all of the time.
(3x) person(x) * ((Vt) time(t)) => can-fool(x,t))

You can fool all of the people some of the time.
(Vx) person(x) => ((Jt) time(t) * can-—fool (x,t))

All purple mushrooms are poisonous.
(V%) (mushroom(x) * purple(x)) => poisonous (x)

Translating English to FOL

Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

You can fool some of the people all of the time.
(3x) person(x) * ((Vt) time(t)) => can-fool(x,t))

You can fool all of the people some of the time.
(Vx) person(x) => ((3t) time(t) * can-fool(x,t))

All purple mushrooms are poisonous.
(V x) (mushroom(x) * purple(x)) => poisonous (x)

No purple mushroom is poisonous.
~(3x) purple(x) ”~ mushroom/(x)
or, equivalently,

(V%) (mushroom(x) ~ purple(x)) => ~poisonous (x)

~ poisonous (x)

Translating English to FOL

Every gardener likes the sun.
(Vx) gardener(x) => likes(x,Sun)

You can fool some of the people all of the time.
(3x) person(x) * ((Vt) time(t)) => can-fool(x,t))

You can fool all of the people some of the time.
(Vx) person(x) => ((3t) time(t) * can-fool(x,t))

All purple mushrooms are poisonous.
(V x) (mushroom(x) * purple(x)) => poisonous (x)

No purple mushroom is poisonous.
~(Jx) purple(x) ~ mushroom/(x)
or, equivalently,

(Vx) (mushroom(x) ~ purple(x)) => ~poisonous (x)

~ poisonous (x)

There are exactly two purple mushrooms.

(3x) (3y) mushroom(x) * purple(x) * mushroom(y) *
purple(y) * ~(x=y) * (Vz) (mushroom(z) * purple(z))
=> ((x=z) v (y=z))

