
11/13/2014

1

MidTerm
Tues. 18 Nov

Up to the end of this Lecture

Local Search Algorithms

• In many optimization problems, path is irrelevant

• the goal state itself is the solution

• Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

• Operates using only single current state, rather than multiple
paths.

• Find Optimal Configuration (satisfies the constraints)

• Use iterative improvement algorithms

• Good for Optimization problems: find the best state according
to some objective function

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum

11/13/2014

2

88--PuzzlePuzzle

4

5

5

3

3

4

3 4

4

2 1

2

0

3

4

3

f(N) = h(N) = number of misplaced tiles

88--PuzzlePuzzle

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

11/13/2014

3

88--PuzzlePuzzle

5

6

6

4

4

2 1

2

0

5

5

3

f(N) = h(N) = Σ distances of tiles to goal

Relaxed problems

• A problem with fewer restrictions on the actions is
called a relaxed problem

• If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h1(n) gives the
shortest solution

• If the rules are relaxed so that a tile can move to
any adjacent square, then h2(n) gives the shortest
solution

11/13/2014

4

The A* procedure
Hill-climbing (and its improved versions) may miss an

optimal solution. Here is a search method that

ensures optimality of the solution.

The algorithm
keep a list of partial paths (initially root to root, length 0);

repeat

succeed if the first path P reaches the goal node;

otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by the sum of two values: the real cost of P till now, and
an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node
reached so far;

until

success or the list of paths becomes empty;

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the
goal state from n.

• An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

• Theorem: If h(n) is admissible, A* using is optimal

11/13/2014

5

� Admissibility: An algorithm is called admissible if it
always terminates and terminates in optimal path

� Theorem: A* is admissible.
� Lemma: Any time before A* terminates there exists on OL

a node n such that f(n) <= f*(s)
� Observation: For optimal path s → n1 → n2 → … → g,

1. h*(g) = 0, g*(s)=0 and
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

A* Algorithm- Properties

Algorithm A*

• f*(n) = g*(n) + h*(n), where,
• g*(n) = actual cost of the optimal path (s, n)

• h*(n) = actual cost of optimal path (n, g)

• g(n) ≤ g*(n)

• By definition, h(n) ≤ h*(n)

• h(n) <= h*(n) where h*(n) is the actual cost of optimal path to
G(node to be found) from n

11/13/2014

6

Lemma

Any time before A* terminates there exists in the open list a node n' such

that f(n') <= f*(S)

For any node n
i
on optimal path,

f(n
i
) = g(n

i
) + h(n

i
)

<= g*(n
i
) + h*(n

i
)

Also f*(ni) = f*(S)

Let n' be the fist node in the optimal path that is in OL. Since all parents

of n' have gone to CL,

g(n') = g*(n') and h(n') <= h*(n')

=> f(n') <= f*(S)

A* always terminates

Proof

If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then g(n) >= e.l(n) where l(n) = # of arcs in the path from S to

n found so far. If A* does not terminate, g(n) and hence

f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

11/13/2014

7

Admissibility of A*

The path formed by A* is optimal when it has terminated

Proof

Suppose the path formed is not optimal

Let G be expanded in a non-optimal path.

At the point of expansion of G,

f(G) = g(G) + h(G)

= g(G) + 0

> g*(G) = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction

So path should be optimal

A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

11/13/2014

8

The Genetic Algorithm
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

Evolutionary Analogy

�The rabbits that survive generate offspring,
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a
wild properties because genes can mutate

�In this analogy, an individual rabbit represents a
solution to the problem(i.e. Single point in the
space)

�The foxes represent the problem constraints
(solutions that do more well are likely to survive)

11/13/2014

9

Evolutionary Analogy

�For selection, we use a fitness function to rank
individuals of the population

�For reproduction, we define a crossover
operator which takes state descriptions of
individuals and combine them to create new
ones

�For mutation, we can choose individuals in the
population and alter part of its state.

The Genetic Algorithm
• Directed search algorithms based on the mechanics of

biological evolution

• Developed by John Holland, University of Michigan
(1970’s)

• To design artificial systems software that retains the
robustness of natural systems

• Provide efficient, effective techniques for search
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering
circles

11/13/2014

10

Terminology

• Evolutionary Computation (EC) refers to computer-

based problem solving systems that use computational

models of evolutionary process.

• Chromosome – It is an individual representing a

candidate solution of the optimization problem.

• Population – A set of chromosomes.

• gene – It is the fundamental building block of the

chromosome, each gene in a chromosome represents

each variable to be optimized. It is the smallest unit of

information.

• Objective: To find “a” best possible chromosome for a

given problem.

Overview of GAs

� GA emulate genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and
for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

� Parameters that affect GA are initial
population, size of the population, selection
process and fitness function.

11/13/2014

11

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

population

11/13/2014

12

Reproduction

reproduction

population

parents

children

Parents are ”selected” at each iteration.

Selection Process

• Selection is a procedure of picking parent chromosome

to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly

from the population.

– Proportional Selection – probabilities for picking each

chromosome is calculated as:

P(xi) = f(xi)/Σf(xj) for all j

11/13/2014

13

Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

modified children

Crossover

P1 (0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0) C1

P2 (1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0) C2

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of
a population

– It leads to effective combination of schemata
(subsolutions on different chromosomes)

11/13/2014

14

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population

Evaluation

• The evaluator decodes a chromosome and
assigns it a fitness measure

evaluation

evaluated

children

modified

children

11/13/2014

15

Deletion

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

11/13/2014

16

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

Creativity in GA

�GAs can be thought of as a simultaneous, parallel

hill climbing search --- The population as a whole is

trying to converge to an optimal solution

�Because solutions can evolve from a variety of

factors, very novel solutions can be discovered

