- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Theorem: If h(n) is admissible, A^* using is optimal

- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Theorem: If h(n) is admissible, A^* using is optimal

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

- $h_1(S) = ?$
- $h_2(S) = ?$

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? 8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	
	. 77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	
	199
Zerind	374

Properties of A*

- Complete? Yes (unless there are infinitely many)
- Time/Space? Exponential mostly b^a
- Optimal? Yes
- Optimally Efficient: Yes