
10/28/2014

1

State Space Search

Uninformed/Blind Search

– Breadth First Search

– Depth First Search

– Depth Limited Search

– Bidirectional Search

Informed/Heuristic Search

- Hill Climbing Search

- A* Algorithm

General Graph search Algorithm

S

A CB

F

ED

G

1 103

5 4
6

2
3

7

Graph G = (V,E)

10/28/2014

2

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

9) OL : Ø

CL : S, A, B, C, D, E,
F, G

Steps of GGS

1. Create a search graph G, consisting only of the start
node S; put S on a list called OPEN.

2. Create a list called CLOSED that is initially empty.

3. Loop: if OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove from OPEN and
put on CLOSED, call this node n.

5. if n is the goal node, exit with the solution obtained by
tracing a path along the pointers from n to s in G.

6. Expand node n, generating the set M of its successors
that are not ancestors of n.

10/28/2014

3

GGS steps (contd.)

7. Establish a pointer to n from those members of M that
were not already in G (i.e., not already on either OPEN
or CLOSED). Add these members of M to OPEN. For each
member of M that was already on OPEN or CLOSED,
decide whether or not to redirect its pointer to n. For
each member of M already on CLOSED, decide for each
of its descendents in G whether or not to redirect its
pointer.

8. Reorder the list OPEN using some strategy.

9. Go LOOP.

Measuring problem-Solving performance

What makes one search scheme better than
another?

Completeness: Guarantee to find a solution?

Time complexity: How long is it to find a sol.?

Optimality: Does the srategy find the shortest path?

Space complexity: How much memory is needed?

Branching Factor b: maximun number of sucessors of
any node

10/28/2014

4

Breadth First Search

• Simple Strategy

• The root is expanded first, Then all its
successors, Then all their successors

• At a given depth, All nodes are expanded.

• With branching factor b, at level d, we have

b+b2+b3+...bd = O (bd) Nodes

• At level 12 with branching factor 10, we 1013 nodes

• Space Problem !

BDF

Completeness?
Yes, if solution exists, there is a guaratee to find it

Time complexity?
O(bd)

Space complexity?
O(bd)

Optimality?
yes

10/28/2014

5

Bidirectional Search

BFS in both directions

How could this help?
– bL vs 2bL/2

• Can reduce time complexity,

• Not always applicable

• May require lots of space

• Hard to implement

BDF

Completeness?

Yes, if solution exists, there is a guarantee to find it

Time complexity?
O(bd), b is branching factor, d is least cost to goal

Space complexity?
O(bd)

Optimality?
yes

10/28/2014

6

Depth First Search

• Always expand deepest node in the fringe of
the tree.

• Modest memory requirement, stores only
single path from root to leaf.

• With branching factor b, at level d, we store
only bm+1 i.e. O(bm)

• It may stuck in an infinite path and never finds
solution

DFS

Completeness?
Yes, assuming state space finite. If the space is not finite,
then no guarantee

Time complexity?
O(m), can do well if lots of goals

Space complexity?
O(n), n deepest point of search

Optimality?
No may find a solution with long path

10/28/2014

7

Depth-limited Search

Put a limit to the level of the tree

DFS, only expand nodes depth ≤ L.

Completeness?
No, if L ≤ d.

Time complexity?
O(bL)

Space complexity?
O(L)

Optimality?
No

Iterative Deepening

• Calls depth-limited search with increasing limits until
goal is found

Completeness?
– Yes.

• Time complexity?
– O(bd)

• Space complexity?
– O(d)

• Optimality?
– Yes

10/28/2014

8

Remarks

• BFS works as a queue. Pick the leftmost element of
the open list , evaluate it and add its children to the
end of the list, FIFO

• DFS works as a stack. Pick the leftmost element of
the open list , evaluate it and add its children to the
beginning of the list, LIFO

Informed Search

� Uses some knowledge -not from the definition of
the problem -

� Can find solutions more efficient than uninformed

� Gerneral approach is best-first-seach

� A node is selected based on an evaluation function
f(n)

� A node that seems to be best is picked and it may
not be the actual best

10/28/2014

9

Best First Search

• The Idea:

– use an evaluation function for each node...
estimate of ``desirability''

– Expand most desirable unexpanded node

Implementation

– Fringe: is a queue sorted in decreasing order
of desirability

Special cases

Gready

A*

Cost function f(n)

� A function f is maintained for each node

f(n) = g(n) + h(n), n is the node in the open list

� “Node chosen” for expansion is the one with least f value

� g(n) is the cost from root S to node n

� h(n) is the estimated cost from node n to a goal

� For BFS: f = 0,

� For DFS: f = 0,

� For greedy g =0

10/28/2014

10

Greedy search

� Expands a node it sees closest to a the goal

� f(n) =h(n)

� Resembles DFS in that it prefers to follow a
single path all the way to the goal

� Also suffers from the same defects of DFS, it
may stuck in a loop i.e. not complete As well
as it is not optimal.

Hill climbing

This is a greedy algorithm

Expands a node it sees closest to a goal

f(n) =h(n)

The algorithm

select a heuristic function;

set C, the current node, to the highest-valued initial
node;

Loop until success or no more children(fail)

select N, the highest-value child of C;

return C if its value is better than the value of N;

10/28/2014

11

Hill Climbing search example

Hill Climbing search example

10/28/2014

12

Hill Climbing search example

Hill Climbing search example

10/28/2014

13

Hill Climbing search example

Hill climbing

Complete: No, Can get stuck in loop. Complete if loops
are avoided.

Time complexity? O(bm), but with some good
heuristic, it could give better results

Space complexity? O(bm), keeps all nodes in memory

Optimality? No

e.g. Arad�Sibiu�Rimnicu Virea�Pitesti�Bucharest is
shorter!

10/28/2014

14

Hill-climbing search

• Problem: depending on initial state, can get stuck in local
maxima,…etc

Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far
away.

3. The ridge problem: almost every move takes
us down.

10/28/2014

15

Problems with hill climbing

1. Local maximum problem: there is a peak, but
it is lower than the highest peak in the whole
space.

2. The plateau problem: all local moves are
equally unpromising, and all peaks seem far
away.

3. The ridge problem: almost every move takes
us down.

Solution:

Random-restart hill climbing is a series of hill-
climbing searches with a randomly selected
start node whenever the current search gets
stuck.

Algorithm A*
� One of the most important advances in AI search algs.

� Idea: avoid expanding paths that are already expensive
f(n) = g(n) + h(n)

� g(n) = least cost path to n from S found so far

� h(n) = estimated cost to goal from n

� f(n) = estimated total cost of path through n to goal

S

n

G

g(n)

h(n)

10/28/2014

16

The A* procedure
Hill-climbing (and its improved versions) may miss an

optimal solution. Here is a search method that ensures

optimality of the solution.

The algorithm
keep a list of partial paths (initially root to root, length 0);

repeat

succeed if the first path P reaches the goal node;

otherwise remove path P from the list;

extend P in all possible ways, add new paths to the list;

sort the list by the sum of two values: the real cost of P till now, and
an estimate of the remaining distance;

prune the list by leaving only the shortest path for each node
reached so far;

until

success or the list of paths becomes empty;

A heuristic that never overestimates is also called
optimistic or admissible.

We consider three functions with values ≥ 0:

• g(n) is the actual cost of reaching node n,

• h(n) is the actual unknown remaining cost,

• h*(n) is the optimistic estimate of h(n).

The A* procedure

10/28/2014

17

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the
goal state from n.

• An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

• Theorem: If h(n) is admissible, A* using is optimal

Read the proof of the optimality of the goal node found by A

