Composition

 Is applied when the distribution F can be expressed as a combination of other distributions F₁, F₂,.... F_n

$$F(x) = \sum_{j=1}^{\infty} p_j F_j(x),$$

$$\sum_{j=1}^{\infty} p_j = 1, p_j \ge 0$$

• Equivalent to say if X has density function f such that $f(x) = \sum_{j=1}^{\infty} p_j f_j(x)$,

That corresponds to decomposing f into its convex combination representation

Composition

- The decomposition can also be seen as dividing the are under finto regions of areas p₁,p₂,.... p_n then determine F_j for each j then apply the inverse method on each one.
- Algorithm
 - Generate a positive random integer, such that P(J=j)=p;
 - 2. Return \mathcal{X} with distribution \mathcal{F}_{j}

Composition Example1

For *O<a<1*, the right trapezoidal distribution has density

$$f(x) = 0.5e^{|x|} \quad \forall x \ real$$

$$Decompose f(x) = .5e^{x}I_{(-\infty,0)}(x) + .5e^{-x}I_{[0,\infty)}(x)$$

$$I_{A} = \begin{cases} 1 & x \in A \\ 0 & O.w. \end{cases}$$

$$f_1(x) = e^x I_{[0,1]}(x)$$

$$f_2(x) = e^{-x} I_{[0,1]}(x)$$

$$U_1 = F_1(x) = e^x, \quad U_2 = F_2(x) = e^{-x}$$

Use the inverse method

$$x = \ln U_1$$
 or $x = \ln U_2$

2

Composition Example1

- Algorithm:
 - 1) Generate $U_1 \sim U(0,1), U_2 \sim U(0,1)$
- If $U_1 < .5$ return $x = \ln U_2$
 - $U_1 > = .5 \qquad x = \ln U_2$

Composition Example2

• For *0<a<1*, the right trapezoidal distribution has density

$$f(x) = \begin{cases} a + 2(1-a)x, 0 \le x \le 1\\ 0, otherwise \end{cases},$$

- We may divide the are as shown
- f(x) can be decomposed as

$$f(x) = aI_{[0,1]}(x) + (1-a)2xI_{[0,1]}(x)$$

 $f_1(x) = I_{[0,1]}(x)$ is U(0,1) density and
 $f_2(x) = 2xI_{[0,1]}(x)$ is a right triangular density
 $p_1 = a, p_2 = 1 - a, p_1 + p_2 = 1$

5

Composition Example2

- Algorithm: Generate $U_1 \sim U(0,1), U_2 \sim U(0,1)$
- $U_{1} < a \text{ return } x = U_{1}$ $U_{2} \ge a \quad f_{2} = 2x$ $U = F_{2}(x) = x^{2}$ $x = \sqrt{U_{2}}$ $return \quad \sqrt{U_{2}}$
- Yet, in some applications, we find computing the square root is expensive So we may use another random number instead U₃ and return x=max(U₂, U₃)

Convolution

- Assume that $X = Y_1 + Y_2 + ... + Y_m$ (where the Ys are IID with CDF), called m-fold convolution of the distributions of Y's
- Algorithm 1. Generate $Y_1, Y_2, ..., Y_m$ IID each with CDF 2. Return $X = Y_1 + Y_2 + ... + Y_m$

7

Remark:

- Composition: Expressed the distribution function (or density or mass) as a (weighted) sum of other distribution functions (or densities or masses)
- Convolution: Express the random variable itself as the sum of other random variables

Normal Distribution

• Note that if $X \sim N(0,1)$

$$\Rightarrow \mu + \sigma X \sim N(\mu, \sigma)$$

 If we can generate unit normal, then we can generate any normal

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} - \infty < x < \infty$$

$$\phi(x) = F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-x^2}{2}} dx$$

- Neither the distribution function nor the density function is invertible
- · Use indirect method

9

Normal: Box-Muller

• Algorithm 1. Generate independent $U_1, U_2 \sim U(0,1)$

2. Set
$$X_1 = \sqrt{-2 \ln U_1} \cos 2\pi U_2$$
,

$$X_2 = \sqrt{-2\ln U_1} \sin 2\pi U_2$$

3.Return X_1

- Each one X₁ or X₂ may be used. Each one of them is an I.I.D N(0,1)
- Technically, independent N(0,1), but serious problem if used with LCGs

10

Normal: Box-Muller

- For any normal distribution $N(\mu, \sigma^2)$
- Generate $S_i = \sigma X_i + \mu$