
LCG Ex.

• Use X0 = 27, a = 17, c = 43, and m = 100.

Xi+1= (a Xi + c) mod m

The Xi and Ri values are:

• X1 = (17*27+43) mod 100 

= 502 mod 100 = 2,                  R1 = 0.02;

• X2 = (17*2+32) mod 100 = 77,   R2 = 0.77;

• X3 = (17*77+32) mod 100 = 52, R3 = 0.52;

• …



LCG
Remarks:

• c = 0, the generator is called Multiplicative LCG.

• If c ≠ 0, the generator is called Mixed LCG.

• The length of the cycle is called its Period,  can be at 

most?

• m should be chosen to be big

• Choose m of the form 2k for efficient computation



LCG
Remarks:

• c = 0, the generator is called Multiplicative LCG.

• If c ≠ 0, the generator is called Mixed LCG.

• The length of the cycle is called its Period,  can be 

at most m-1

• m should be chosen to be big

• Choose m of the form 2k for efficient computation



LCG
Theorem:

If c ≠ 0, LCG has full period

iff

• Integers m and c are relatively prime ( the only 

positive integer that divides both m and c is 1)

• Every prime number that is a factor of m is also a 

factor of a-1

• If integer m is a multiple of 4, a-1 is also a multiple of 

4



Multiplicative Congruential

Generator

• If c= 0,   Xi+1= (a Xi ) mod m       i

=0,1,2,…

• Break the first condition of the thm.  i.e. 

Not full period

• Its max period is 2b-1 where  b is the # of 

digits (size of ward)

• Advantages:

Faster,     Simpler,  easy to implement



Seed Selection
• Often we need random numbers for more than one 

variable in a simulation

• E.g., inter-arrival times, service times

• Then, we need to use multiple random number 

streams such that we do not introduce correlations 

between the two random variables owing to our 

choice of random numbers



Seed Selection

For a good selection of seeds:

• Do not use zero

• Avoid even values

• Use a separate seed for a separate stream such 

that random numbers do not overlap

• Do not use random seeds because they are hard 

to replicate



Need to test

• The above only tells us how to create 

RNs from RNG that will have a large 

period

• It does not guarantee the RNG output 

will be “random”   (e.g., xi+1 = (xi + 1) 

mod m not random!)

• Need to apply statistical tests to validate 

that the RNG gives acceptably random 

results



Testing Random Number 

Generators

 Two categories of test

• Test for uniformity …

• Test for independence

 Passing a test is only a necessary 

condition and not a sufficient condition

• i.e., if a generator fails a test it implies it 

is bad

• but if a generator passes a test it does 

not

necessarily imply it is good.



Testing Distributions

• Comparing Distributions: Tests for Goodness-of-

Fit

Know how to compare between two distributions

– Chi-Square Distribution (for discrete models)

– Kolmogorov-Smirnov (K-S) Test (for 

continuous models)



Goodness-of-fit

• Statistical Tests enable us to compare 

between two distributions, also known as 

Goodness-of-Fit.

• The goodness-of-fit of a statistical model 

describes how well it fits a set of 

observations. 

• Measures of goodness of fit typically 

summarize the discrepancy between 

observed values and the values expected 

under the model in question

• Goodness-of-fit means how well a statistical 



The Pearson's chi-square test is to compare 

two probability mass functions of two 

distribution.

If the difference value (Error) is greater than 

the critical value, the two distribution are said 

to be different or the first distribution does not 

fit (well) the second distribution.

If the difference if smaller than the critical 

value, the first distribution fits well the second 

distribution

(PEARSON’S)

CHI-SQUARE TESTS FOR DISCRETE 

MODELS



(PEARSON'S ) CHI-SQUARE 

TEST

• Pearson's chi-square is used to assess two types of 

comparison: 

– tests of goodness of fit:  it establishes whether or 

not an observed frequency distribution differs from 

a theoretical distribution.

– tests of independence. it assesses whether paired 

observations on two variables are independent of 

each other.
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Steps in Test of Hypothesis
1. Determine the appropriate test 

2. Establish the level of significance:  α

3. Formulate the statistical hypothesis                               
Ho : The two variables are independent                       
H1 : The two variables are not independent

4. Calculate the test statistic

5. Determine the degree of freedom

6. Compare computed test statistic against the  
critical value (from the table of the test)

• The critical tabled values are based on sampling 

distributions of the Pearson chi-square statistic

• If calculated 2 is greater than 2 table value, 

reject  Ho



Testing

• Testing is not necessary if a well-known 

simulation package is used or if a well tested

generator is used

• we focus on “empirical” tests, that is tests that 

are applied to an actual sequence of random 

numbers

• EX: 

Chi-Square Test



Chi-Square Test





exp

exp)( 2
2 obs



• Test is designed for discrete distributions and 

large sample sizes only. For continuous 

distributions, Chi-Square test is only an 

approximation (i.e. level of significance holds only 

for n). 

•  obs is the observed data and exp is the 

expected

frequency of the ith cell, i=1,2,…k cells. 

• Compute the Chi-Square distribution with (k-1)

degrees of freedom



Chi-Square test: Example

Uniform distribution in [0 .. 9]



Chi-Square Table



EX.

.34 .9 .25 .89 .87 .44 .12 .21 .46 .67

.83 .76 .79 .64 .7 .81 .94 .74 .22 .74

.96 .99 .77 .67 .56 .41 .52 .73 .99 .02

.47 .3 .17 .82 .56 .05 .45 .31 .78 .05

.79 .71 .23 .19 .82 .93 .65 .37 .39 .42

.99 .17 .99 .46 .05 .66 .1 .42 .18 .49

.37 .51 .54 .01 .81 .28 .69 .34 .75 .49

.72 .43 .56 .97 .3 .94 .96 .58 .73 .05

.06 .39 .84 .24 .4 .64 .4 .19 .79 .62

.18 .26 .97 .88 .64 .47 .6 .11 .29 .78



What is Monte Carlo 

Simulation ?
• Monte Carlo methods are a widely used class of 

computational algorithms for simulating the 

behavior of various physical and mathematical 

systems, and for other computations.

• Monte Carlo algorithm is often used to find 

solutions to mathematical numerical problems 

(which may have many variables) that cannot 

easily be solved, (e.g. integral calculus, or other 

numerical methods)
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Monte Carlo Simulation

• A scheme employing random numbers which is 

used to solve certain stochastic or deterministic 

problems where the passage of time plays no 

substantive role.

• Common problem is the estimation of                  

where f is a function, x is a vector and Ω is 

domain of integration.

• Special case: Estimate                 for scalar x

and limits of integration a, b
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Monte Carlo Simulation

Let X be a uniform random variable on the 

interval [a, b] with density

and let x1, …, xn be a random sample from X. 

Then
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Monte Carlo Simulation

Example: Estimate

We approximate this by

where x1, …, xn are a sample from a uniform [0, 

b] random variable. 


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Monte Carlo Simulation

Example: Estimate

There is considerable variability in the 
quality of solution; accuracy of numerical 
integration sensitive to integrand and 
domain of integration

n = 10 n = 100 n = 1000 n = 2000

b = 1
(answer = 2) 1.753 2.032 1.994 1.999

b = 2

(answer = 0) -0.898 -0.013 0.137 0.079


b

dxx
0

.)sin(



An owner of a bakery shop would like to 
determine how many 10-inch birthday 
cakes he should produce each day in 
order to maximize his profit. His present 
method of determining the quantity to 
bake is based on his best guess.

Case Study

Cake’s shop problem



Cake’s shop problem

• The production costs are $2.00 per cake.

• And the profit for each cake is $2.5.

• However, If over estimates the daily demand, 

some cakes will be left over at the end of the 

day. The policy is to sell all leftover cakes to a 

local store that specializes in day-old items. 

He is currently receiving $1.50 per cake for 

the surplus cakes, thus incurring a loss of 

$0.50 per cake.



Cake’s shop problem

• Case 1: The production quantity is less 

than or equal to demand

If x<= d, z = 2.5x

• Case 1: The production quantity is 

greater than  the demand

If x > d z = 2.5d + (x-d) (-0.5)

Z = 3.00 d- 0.5 x



Cake’s shop problem

• Generalizeing:

p = selling price for each cake

c = cost of each unit

s = day-old price

• If x<= d, z = (p-c) x

• If x > d z = (p-c) d + (x-d) (s-c)

Z = (p-s) d – (s-c) x



Historical day demand for the 

birthday cakes

Daily demand d Frequency of Days observed Probability Distribution

0 1 0.05

1 2 0.1

2 1 0.05

3 2 0.1

4 3 0.15

5 6 0.3

6 3 0.15

7 1 0.05

8 1 0.05

Total 20 1

nsobservatioofnumbertotal

nobservatiooffrequency
frequencyrelative

___

__
_ 



Hand Simulation

• Take a sheet of paper and cut it into twenty 

equal pieces. 

• Follow the historical daily demand frequency 

in the table, 

• write the number zero on one piece. 

• On two of the remaining pieces write the 

number one, which stands for the demand of 

one unit. 

• Check the numbers you have written 

carefully, because this “deck” of twenty 



Hand Simulation

• The first step is the selection of the production 

quantity, Assume (x=3). 

• use the deck of twenty slips of paper to generate 

a demand by selecting one slip of paper at 

random. 

• Suppose the first slip drawn has a 5 written on it. 

• We shall then use a demand of 5 cakes for the 

first simulated day of bakery shop operation.

• i.e. underproduction of 2 cakes. 



Hand Simulation

• Since x<d, we can computer our first day’s profit  

using the expression 

• 2.5x=25(3)=$7.5. i.e.  Total profit of $7.5. 

• Generate the demand for second day (reshuffle 

and draw a piece) suppose d=1

• Since  x>d use the second case

• z=3(1) - 0.5(3) = $1.5

• So the total profit is 7.5 + 1.5 = 9



10-day simulation results for 

production quantity x=3

Day Generated demand Daily profit Total profit

1 5 7.5 7.5

2 1 1.5 9

3 6 7.5 16.5

4 3 7.5 24

5 4 7.5 31.5

6 4 7.5 39

7 3 7.5 46.5

8 0 -1.5 45

9 5 7.5 52.5

10 6 7.5 60



Hand Simulation

• Now we perform the same ten day simulation for 

another  quantity production x =1,2,3…8

• Compare the total profit for each one

• Pick the best profit to be the suggested 

production quantity

• Of course if we run the simulation for more days 

we get more accurate estimate.



10-days  Simulation Results for 

various production quantities

Production Size Ten Day Simulated profit $

1 25

2 44

3 60

4 79

5 90

6 93

7 91

8 89

9 5

10 6

From the table it is clear 

that the best production 

quantity that maximizes 

the profit is at x=6. The 

results are based on only 

10-day simulation. 



The role of random numbers 

in simulation

• Suppose we select random numbers in sets of two 

digits. 

• This will provide us with 100 two-digit random 

numbers from 00 to 99 with each two-digit random 

number having a 1/100 chance of being selected

• 0 unites, the relative frequency of 0 is 5% Thus we 

want 5% of the 100 possible two-digit random 

numbers to correspond to a demand of 0 units. 

• While choosing any five numbers of the 100 numbers 

will do we may assign a demand of 0 to the first 5 

numbers i.e. 00, 01,02,03, and 04



Random number Intervals and 

the daily demand

Daily Demandrelative FrequencyInterval of Random numbers

0 0.15 00 to 04

1 0.1 05 to 14

2 0.05 15 to 19

3 0.1 20 to 29

4 0.15 30 to 44

5 0.3 45 to 74

6 0.15 75 to 89

7 0.05 90 to 94

8 0.05 95 to 99



Results of simulating ten daily 

demands

Random number Simulated daily demand simulated daily demand

63 5

27 3

15 2

99 8

86 6

71 5

74 5

45 5

11 1

2 0



The role of random numbers

• For any simulation problem in which a relative 

frequency distribution of a variable can be developed, 

• It is easy to apply the above random number based 

procedure to simulate values of the variable. 

• First, develop a table of intervals by associating an 

interval of random numbers with each possible value 

of the variable 

• Then as each random number is selected, you can 

simply check the corresponding interval and find the 

associated value of the variable.



The role of random numbers

• Obviously, for long and complex simulations that 

require numerous calculations, a high speed 

computer simulation process is desirable. 

• In computer simulation pseudo- random numbers are  

used in exactly the same way as the random 

numbers selected from random number tables above.

• It would be very risky to make a decision based on 

the results of such a short period of simulation. 



The role of random numbers

• When we think of performing the simulation 

calculations for a simulated period as long as 500 

days, the problems of carrying out the simulation for 

even a case as small as the bakery shop problem are 

significant. 

• For example let us consider the 500 days. The 

mathematical model does not change but the work 

we have to go through to evaluate the results does 

change but expands . Now we can create a table 

similar to the ten-day table to evaluate each order 

size for 500 days of operation.


