LCG EX.

« Use X, =27,a=17,c =43, and m = 100.
Xi;1= (@ X+ c) mod m
The X, and R, values are:
e X, =(17*27+43) mod 100
=502 mod 100 = 2, R, =0.02;
« X, =(17*2+32) mod 100 =77, R, =0.77;
« X3 =(17*77+32) mod 100 = 52, R, = 0.52;



LCG
Remarks:

« ¢ =0, the generator is called Multiplicative LCG.
If ¢ # 0, the generator is called Mixed LCG.

The length of the cycle is called its Period, can be at
most?

m should be chosen to be big
Choose m of the form 2k for efficient computation



LCG
Remarks:

« ¢ =0, the generator is called Multiplicative LCG.
If ¢ # 0, the generator is called Mixed LCG.

The length of the cycle is called its Period, can be
at most m-1

m should be chosen to be big
Choose m of the form 2k for efficient computation



Theorem: LCG

If c # 0, LCG has full period

Iff

* Integers m and c are relatively prime ( the only
positive integer that divides both m and c is 1)

« Every prime number that is a factor of m is also a
factor of a-1

 If integer m is a multiple of 4, a-1 is also a multiple of
4



Multiplicative Congruential
Generator
e Ifc=0, X, ,,=(@X )modm |
=0,1,2,...

 Break the first condition of the thm. 1I.e.
Not full period

* Its max period is 2°-1where b is the # of
digits (size of ward)

« Advantages:
Faster, Simpler, easy to implement



Seed Selection

 Often we need random numbers for more than one
variable in a simulation

* E.g., Inter-arrival times, service times

« Then, we need to use multiple random number
streams such that we do not introduce correlations
between the two random variables owing to our
choice of random numbers



Seed Selection

For a good selection of seeds:
Do not use zero

 Avoid even values

« Use a separate seed for a separate stream such
that random numbers do not overlap

« Do not use random seeds because they are hard
to replicate



Need to test

* The above only tells us how to create
RNs from RNG that will have a large
period

* |t does not guarantee the RNG output
will be “random™ (e.g., Xi,; = (X, + 1)
mod m not random!)

* Need to apply statistical tests to validate

that the RNG gives acceptably random
results



Testing Random Number
Generators

» Two categories of test
« Test for uniformity ...
« Test for independence

» Passing a test Is only a necessary
condition and not a sufficient condition

* |.e., If a generator falls a test it implies it
IS bad

 but If a generator passes a test it does
not



Testing Distributions

« Comparing Distributions: Tests for Goodness-of-
Fit
Know how to compare between two distributions

— Chi-Square Distribution (for discrete models)

— Kolmogorov-Smirnov (K-S) Test (for
continuous models)



Goodness-of-fit

Statistical Tests enable us to compare
between two distributions, also known as
Goodness-of-Fit.

The goodness-of-fit of a statistical model
describes how well it fits a set of
observations.

Measures of goodness of fit typically
summarize the discrepancy between
observed values and the values expected
under the model in question
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(PEARSON'S)
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distribution.

If the difference value (Error) is greater than
the critical value, the two distribution are said
to be different or the first distribution does not
fit (well) the second distribution.

If the difference If smaller than the critical

value, the

first distribution fits well the second

distribution



(PEARSON'S ) CHI-SQUARE
TEST

« Pearson's chi-square is used to assess two types of
comparison:

— tests of goodness of fit: it establishes whether or
not an observed frequency distribution differs from
a theoretical distribution.

— tests of independence. It assesses whether paired
observations on two variables are independent of
each other.



Steps In Test of Hypothesis

1. Deternline the appropriate test
Establish the level of significance: a

3. Formulate the statistical hypothesis
H, : The two variables are independent
H . The two variables are not independent

4. Calcu ate the test statistic
5. Determine the degree of freedom

6. Compare computed test statistic against the
critical value (from the table of the test)

« The critical tabled values are based on sampling
distributions of the Pearson chi-square statistic

« |If calculated y? is greater than 2 table value,
reject H, 14

N




Testing

» Testing is not necessary if a well-known
simulation package is used or if a well tested

generator is used

« we focus on “empirical” tests, that is tests that

are applied to an actual sequence of random
numbers

« EX:
Chi-Square Test



Chi-Square Test

, < (obs —exp)?
x:=> p——




Compute terms:

Observed: Expected:
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Difference:
0 2
1 -2
2 0
3 -1
O-E=|4 2
5 2
6 0
7 4
g 0
g 1

0.34 0.90
0.83
0.96 0.99
0.47 0.30
0.79 0.71
0.99 0.17
(.37 0.51
0.72 0.43

0.76

0.06 0.39
L 0.18 0.26

(0-F) =

0.25
0.79
0.77
0.17
0.23
0.99
0.54
0.56
0.84
0.97

0.89
0.64
0.67
0.82
0.19
0.46
0.01
0.97
0.24
0.88

0
0 4
1 4
2 0
3 1
4 4
5 4
6 0
7 16
8 0
9 1

I

0.87
0.70
0.56
0.56
0.82
0.05
0.81
0.30
0.40
0.64

Difference?:

0.44
0.81
0.41
0.05
0.93
0.66
0.28
0.94
0.64
0.47

0.12
0.94
0.52
0.45
0.65
0.10
0.69
0.96
0.40
0.60

0.21
0.74
0.73
0.31
0.37
0.42
0.34
0.58
0.19
0.11

0.46
0.22
0.99
0.78
0.39
0.18
0.75
0.73
0.79
0.29

Normalized:
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Critical Values of the x 2 Distribution
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EX.

34 19 |25 |89 |87 |44 12 .21 |46 |67
83 .76 .79 .64 7 81 94 74 22 .74
96 99 77 67 56 41 52 /3 .99 .02
47 .3 17 82 56 .05 45 31 .78 .05
79 /1 23 19 82 93 .65 .37 .39 .42
99 17 99 46 05 .66 .1 42 .18 .49
37 51 54 01 81 .28 .69 .34 .75 .49
A2 43 56 .97 .3 94 96 58 .73 .05

06 39 84 24 4 64 4 19 /9 .62
18 26 97 88 .64 47 .6 A1 .29 .78



What i1s Monte Carlo
Simulation ?

« Monte Carlo methods are a widely used class of
computational algorithms for simulating the
behavior of various physical and mathematical
systems, and for other computations.

« Monte Carlo algorithm is often used to find
solutions to mathematical numerical problems
(which may have many variables) that cannot
easily be solved, (e.qg. integral calculus, or other
numerical methods)



« ASC
used

Monte Carlo Simulation

neme employing random numbers which Is
to solve certain stochastic or deterministic

prob

ems where the passage of time plays no

substantive role.

Common problem is the estimation of | f ()dx.

where f Is a function, x IS a vector andQQ IS
domain of integration.

b

Special case: Estimate [ f(\)dx for scalar x
and limits of integration a, b

21



Monte Carlo Simulation

Let X be a uniform random variable on the

Interval [a, b] with density

p(x)zi, as<x<b
b—a

and let x4, ..., x,, be a random sample from X.

Then b b
j f (x)dx j p(x)dx

a

= (b—a) j f (x) p(x)dx
( a)E[f (X)]

22



Monte Carlo Simulation

Example: Estimate jobsin(x)dx.
We approximate this by
23 sin(x,).
NS4

where X, ..., X, are a sample from a uniform [0,
b] random variable.

23



Monte Carlo Simulation

Example: Estimate jobsin(x)dx.

n=10 n =100 n=1000 | n=2000
b=1
(answer = 2) 1.753 2.032 1.994 1.999
b=2
(answer = 0) -0.898 -0.013 0.137 0.079

There Is considerable variabllity in the
guality of solution; accuracy of numerical
iIntegration sensitive to integrand and
domain of integration



Case Study
Cake’s shop problem

An owner of a bakery shop would like to
determine how many 10-inch birthday
cakes he should produce each day in
order to maximize his profit. His present
method of determining the quantity to
bake is based on his best guess.



Cake’s shop problem

« The production costs are $2.00 per cake.
« And the profit for each cake is $2.5.

 However, If over estimates the daily demand,
some cakes will be left over at the end of the
day. The policy is to sell all leftover cakes to a
local store that specializes in day-old items.
He is currently receiving $1.50 per cake for

the surplus cakes, thus incurring a loss of
$0.50 per cake.



Cake’s shop problem

« Case 1: The production guantity is less
than or equal to demand

If x<=d, Z = 2.5x

« Case 1: The production guantity is
greater than the demand

fx>d z=25d+ (x-d) (-0.5)
Z =3.00 d- 0.5 X



Cake’s shop problem

« Generalizeing:

p = selling price for each cake

c = cost of each unit

s = day-old price

e |f x<=d, Z = (p-C) X

e Ifx>d Z = (p-c) d + (x-d) (s-c)
Z = (p-s) d — (s-Cc) x



Historical day demand for the
birthday cakes

Daily deman Frequency Probability Distribution

0 1 0.05
1 0.1
2 1 0.05
3 2 0.1
4 3 0.15
5 6 0.3
6 3 0.15
7 1 0.05
8 1 0.05
Total 20 1

frequency _of _observation

relative _ frequency = _
total _number _of _observations




Hand Simulation

Take a sheet of paper and cut it into twenty
equal pieces.

Follow the historical daily demand frequency
In the table,
write the number zero on one piece.

On two of the remaining pieces write the
number one, which stands for the demand of
one unit.

Check the numbers you have written
carefully, because this “deck” of twenty



Hand Simulation

The first step is the selection of the production
guantity, Assume (x=3).

use the deck of twenty slips of paper to generate
a demand by selecting one slip of paper at
random.

Suppose the first slip drawn has a 5 written on it.

We shall then use a demand of 5 cakes for the
first simulated day of bakery shop operation.

l.e. underproduction of 2 cakes.



Hand Simulation

Since x<d, we can computer our first day’'s profit
using the expression

2.5x=25(3)=$7.5. i.e. Total profit of $7.5.

Generate the demand for second day (reshuffle
and draw a piece) suppose d=1

Since x>d use the second case
z=3(1) - 0.5(3) = $1.5
So the total profitis 7.5+ 1.5=9



10-day simulation results for
production quantity x=3

Day Generated demand Daily profit Total profit
1 5 7.5 7.5
2 1 1.5 9
3 6 7.5 16.5
4 3 7.5 24
5 4 7.5 31.5
6 4 7.5 39
7 3 7.5 46.5
8 0 -1.5 45
9 5 7.5 52.5
10 6 7.5 60



Hand Simulation

Now we perform the same ten day simulation for
another quantity production x =1,2,3...8

Compare the total profit for each one

Pick the best profit to be the suggested
production quantity

Of course if we run the simulation for more days
we get more accurate estimate.



10-days Simulation Results for
various production quantities

Production Size  Ten Day Simulated profit

1
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25
44
60
79
90
93
91
89
5
6

From the table it is clear
that the best production
guantity that maximizes
the profit is at x=6. The
results are based on only
10-day simulation.



The role of random numbers
IN simulation

Suppose we select random numbers in sets of two
digits.
This will provide us with 100 two-digit random

numbers from 00 to 99 with each two-digit random
number having a 1/100 chance of being selected

0 unites, the relative frequency of 0 is 5% Thus we
want 5% of the 100 possible two-digit random
numbers to correspond to a demand of O units.

While choosing any five numbers of the 100 numbers
will do we may assign a demand of O to the first 5
numbers i.e. 00, 01,02,03, and 04



Random number Intervals and
the daily demand

Daily Demarelative Frequen Interval of Random num

0 0.15 00 to 04
1 0.1 05to 14
2 0.05 15to 19
3 0.1 20 to 29
4 0.15 30 to 44
5 0.3 45 to 74
6 0.15 75 to 89
7 0.05 90 to 94
3 0.05 95to0 99



Results of simulating ten daily
demands

Random number Simulated daily demand simulated daily demand
63 5
27
15
99
86
71
74
45
11
2

O = U1 11 1 O 0O NN W



The role of random numbers

For any simulation problem in which a relative
frequency distribution of a variable can be developed,

It is easy to apply the above random number based
procedure to simulate values of the variable.

First, develop a table of intervals by associating an
iInterval of random numbers with each possible value
of the variable

Then as each random number is selected, you can
simply check the corresponding interval and find the
associated value of the variable.



The role of random numbers

« Obviously, for long and complex simulations that
require numerous calculations, a high speed
computer simulation process is desirable.

 In computer simulation pseudo- random numbers are
used in exactly the same way as the random
numbers selected from random number tables above.

It would be very risky to make a decision based on
the results of such a short period of simulation.



The role of random numbers

* When we think of performing the simulation
calculations for a simulated period as long as 500
days, the problems of carrying out the simulation for
even a case as small as the bakery shop problem are
significant.

» For example let us consider the 500 days. The
mathematical model does not change but the work
we have to go through to evaluate the results does
change but expands . Now we can create a table
similar to the ten-day table to evaluate each order
size for 500 days of operation.



