
Model Development Life Cycle
Define goals, objectives of study

Develop conceptual model

Develop specification of model

Develop computational model

Verify model

Validate model

Fundamentally an
iterative process

Focus on
these steps

Determine Goals and Objectives
• What do you hope to accomplish with the model

– May be an end in itself
• Predict the weather
• Train persons to develop certain skills (e.g., driving)

– More often a means to an end
• Optimize a manufacturing process or develop the most

cost effective means to reduce traffic congestion in
some part of a city

• Goals may not be known when you start the project!
– One often learns things along the way

Develop Conceptual Model
• An abstract (i.e., not directly executable) representation

of the system
• What should be included in model? What can be left

out?
• What abstractions should be used

– Level of detail
– Often a variation on standard abstractions

• What metrics will be produced by the model
• Appropriate choice depends on the purpose of the

model

Develop Specification Model
• A more detailed specification of the model

including more specifics
• Collect data to populate model

– Traffic example: Road geometry, signal timing,
expected traffic demand, driver behavior

• Development of algorithms necessary to
include in the model

Develop Computational Model
• Executable simulation model
• Software approach

– General purpose programming language
– Special purpose simulation language
– Simulation package
– Approach often depends on need for

customization and economics

Queueing Network Applications
Queueing networks are useful for many applications
• Customers utilizing business services (e.g., bank,

hospital, restaurant …)
• Manufacturing: assembly lines
• Supply chains
• Transportation (aircraft, vehicles)
• Computer communication networks
• Computer systems (jobs being processes by a set of

compute servers; I/O systems)

An Example: Single Server Queue

Outline
• Problem description
• Conceptual model: queuing networks
• Specification model
• Time stepped(Fixed time) implementation

Problem Description
A certain airport contains a single runway on which arriving

aircraft must land. Once an aircraft is cleared to land, it
will use the runway, during which time no other aircraft can
be cleared to land. Once the aircraft has landed, the
runway is available for use by other aircraft. The landed
aircraft remains on the ground for a certain period of time
before departing.

The objective is to determine
• The average time an aircraft must wait when arriving at an

airport before they are cleared to land
• The maximum number of aircrafts that will be on the

ground at one time

Problem Description
• The output metrics suggest focusing on

– Waiting process
– Number of aircraft on the ground

• We could develop a detailed model keeping
track of the position of each aircraft every
second, but this may be too much.

• Queuing models are a natural abstraction for
modeling systems like these that include
– Customers competing to use limited resources
– Waiting (queuing) to use the resource
– Primary metrics of interest have to do with

resource utilization, time customer is being served
or waiting

– Details of what customer is doing while waiting are
not important

Conceptual Model

• Customer (aircraft)
– Entities utilizing the system/resources

• Server (runway)
– Resource that is serially reused; serves one customer

at a time
• Queue

– Buffer holding aircraft waiting to land

customerqueue
server

Specification Model
Customers

Schedule of aircraft arrivals:
Often, probability distribution defines time between successive customer

arrivals (interarrival time)
Assumes interarrival times independent, and identically distributed(iid)

Customer attributes? e.g., priorities
Servers
How much service time is needed for each customer?
May use probability distribution to specify customer service time (iid)

How many servers?
Queue

Service discipline - who gets service next?
• First-in-first-out (FIFO), Last-in-first-out (LIFO), random …
• May depend on a property of the customer (e.g., priority, “smallest”

first)

Specification Model
Assume
• Customers

– Assume arrivals are iid, following an exponential
distribution for interarrival times with mean µ

– Assume all customers are identical (no specific
attributes)

• Servers
– Assume customer service time is iid, exponentially

distributed, mean λ
– Assume one server (one runway)

• Queue
– Assume first-in-first-out queue (first-come-first-serve)

discipline
– Assume queue has unlimited capacity

Computational Model
A computer simulation is a computer program that models the

behavior of a physical system over time. To do this, we
must

• Define a computer representation of the state of the
system, i.e., define state variables that encode the current
state of the physical system

• Determine the state of the system over all points in time in
which we are interested (compute a sample path)
– Define a simulation program that modifies state variables to model

the evolution of the physical system over time.

Key questions
• What are the state variables?
• How does the state change (what rules are used)?

Discrete Event Simulation
Discrete event simulation: computer model for a system
where changes in the state of the system occur at discrete
points in simulation time.

Fundamental concepts:
• system state (state variables)
• state transitions (events)

each event has a timestamp indicating when it occurs

An DES computation can be viewed as a sequence of event
computations, with each event computation is assigned a
(simulation time) time stamp

Each event computation can
• modify state variables
• schedule new events

State Variables (back to the ex.)

State:
• InTheAir: number of aircraft either landing or waiting to

land
• OnTheGround: number of landed aircraft
• RunwayFree: Boolean, true if runway available

customerqueue
server

Events
• An event must be associated with any

change in the state of the system
• Airport example:

– Event for an aircraft arrival (InTheAir,
RunwayFree)

– Event for aircraft landing (InTheAir,
OnTheGround, RunwayFree)

– Event for aircraft departure
(OnTheGround)

Evolving System State
• Given the current state of the system,

how do we determine the new system
state?

• At which points in time (in the simulated
system) we need to compute the
system state: Two Approaches
– Fixed increment time advance (time

stepped simulation)
– Next event time advance (Irregular)

(typically, when the state changes)

Fixed Increment Time
/* ignore aircraft departures */
Float InTheAir: # aircraft landing or waiting to land
Float OnTheGround: # landed aircraft
Boolean RunwayFree: True if runway available
Float NextArrivalTime: Time the next aircraft arrives
Float NextLanding: Time next aircraft lands (if one is landing)

For (Now = 1 to EndTime) { /* time step size is 1.0 */
if (Now >= NextArrivalTime) /* if aircraft just arrived */
{ InTheAir := InTheAir + 1;

NextArrivalTime := NextArrivalTime + RandExp(µ);
if (RunwayFree)
{ RunwayFree := False;

NextLanding := Now + RandExp(λ);
}

}
if (Now >= NextLanding) /* if aircraft just landed */
{ InTheAir := InTheAir - 1;
OnTheGround := OnTheGround + 1;
if (InTheAir > 0) NextLanding := Now + RandExp(λ)
else {RunWayFree := True; NextLanding := EndTime+1;}

}

Problems With Fixed
increment time advance

• State changes may occur between time
steps
– Use small time steps to minimize error

• Multiple state changes within the same
time step may be processed in the
wrong order
– Solvable by ordering state changes within

time step (more work)
• Inefficient

– Many time steps no state changes occur,
especially if small time steps

The Example: Air traffic…
Single runway for incoming aircraft, ignore departure queueing
• L = mean time runway used for each landing aircraft (exponential distrib.)
• G = mean time on the ground before departing (exponential distribution)
• A = mean interarrival time of incoming aircraft (exponential distribution)

State:
• Now: current simulation time
• InTheAir: number of aircraft landing or waiting to land
• OnTheGround: number of landed aircraft
• RunwayFree: Boolean, true if runway available

Events:
• Arrival: denotes aircraft arriving in air space of airport
• Landed: denotes aircraft landing
• Departure: denotes aircraft leaving

Landing Event

Landed Event:

InTheAir:=InTheAir-1;

OnTheGround:=OnTheGround+1;

Schedule Departure event @ Now + RandExp(G);
If (InTheAir>0)

Schedule Landed event @ Now + RandExp(L);
Else

RunwayFree := TRUE;

• L = mean time runway is used for each landing aircraft
• G = mean time required on the ground before departing
• Now: current simulation time
• InTheAir: number of aircraft landing or waiting to land
• OnTheGround: number of landed aircraft
• RunwayFree: Boolean, true if runway available

An aircraft has completed its landing.

Arrival Event

Arrival Event:
InTheAir := InTheAir+1;
Schedule Arrival event @ Now + RandExp(A);
If (RunwayFree) {
RunwayFree:=FALSE;
Schedule Landed event @ Now + RandExp(L);

}

• A: mean interarrival time of incoming aircraft
• Now: current simulation time
• InTheAir: number of aircraft landing or waiting to land
• OnTheGround: number of landed aircraft
• RunwayFree: Boolean, true if runway available

New aircraft arrives at airport. If the runway is free, it will begin
to land. Otherwise, the aircraft must circle, and wait to land.

Departure Event

Departure Event:

OnTheGround := OnTheGround - 1;

• Now: current simulation time
• InTheAir: number of aircraft landing or waiting to land
• OnTheGround: number of landed aircraft
• RunwayFree: Boolean, true if runway available

An aircraft now on the ground departs for a new
destination.

Execution Example

OnTheGround

Simulation Time

State
Variables

RunwayFree

InTheAir

0 1 2 3 4 5 6 7 8 9 10 11

true

0

0

Time Event
1 Arrival F1
3 Arrival F2

Now=0

Processing:

false

1

Time Event

4 Landed F1
3 Arrival F2

Arrival F1

Now=1

2

Time Event

4 Landed F1

Arrival F2

Now=3

1

Landed F1

Now=4

Time Event

8 Depart F1
7 Landed F2

0

2

true

Time Event

8 Depart F1

11 Depart F2

Landed F2

Now=7

Time Event

11 Depart F2

Depart F1

Now=8

0

Time Event

Depart F2

Now=11

25

Discrete-Event Simulation
Logical Flow

Start

1. Set simulation clock = 0

2. Initialize system state
and statistical counters

3. Initialize event list

0. Invoke the initialization routine

Repeatedly:

1. Invoke the timing routine

2. Invoke event routine i

1. Determine the next
event type, say i

2. Advance the
simulation clock

1. Update system state

2. Update statistical counters

3. Generate future events and add to event list

1. Compute estimates of interest

2. Write report

Is
simulation

over?

Stop

Main program

Event routine i

Timing routineInitialization routine

Report generator

Library routines

Generate random variates

No

Yes

26

Discrete-Event Simulation
Components

Initialization routine: A subprogram to initialize the
simulation model at time 0

Timing routine: A subprogram that determines the next
event from the event list and then advances the
simulation clock to the time when the next event is to
occur

Event routine: A subprogram that updates the system state
when a particular type of event occurs (there is one
event routing for each type of event)

Library routines: A set of subprograms used to generate
random observations from probability distributions
that were determined as part of the simulation model

27

Discrete-Event Simulation
Components

Report generator: A subprogram that computes
estimates (from the statistical counters) of the
desired measures of performance and produces
a report when the simulation ends

Main program: A subprogram that invokes the
timing routing to determine the next event and
then transfers control to the corresponding event
routine to update the system state appropriately.
The main program may also check for
termination and invoke the report generator
when the simulation is over.

28

Discrete-Event Simulation
Stopping Rules

Number of events of a certain type reached
a pre-defined value
Example: stop M/M/1 simulation after the 1000th

departure
Simulation time reaches a certain value; this

is usually implemented by scheduling an
“end-simulation” event at the desired
simulation stop time.

Output Statistics
Compute
• The maximum number of aircraft that will be

on the ground at one time
• Average time an aircraft must wait before

they are cleared to land

• Maximum on ground
– Variable for airport indicating number currently on

ground
– Maximum “on the ground” so far

• Wait time
– Variables for airport indicating total wait time,

number of aircraft arrivals
– State variable for each aircraft indicating arrival

time

Input Analysis

• Stochastic simulation models use random
variables to represent inputs such as inter-
arrival times, service times, waiting time at an
ATM machine…etc

• We need to know the distribution and
parameters of each of these random
variables.

Driving Simulation models
Some methods to do this:

Collect real data, and feed this data to the
simulation model. (trace-driven simulation.)

Collect real data, build an empirical
distribution of the data, and sample from this
distribution in the simulation model.

Collect real data, fit a theoretical
distribution to the data, and sample from
that distribution in the simulation model.

• Focus on the last two of these methods.

Why do we use Theoretical
Distribution

• Theoretical distributions “smooth out” the
irregularities that may be present in the
empirical distributions.

• Gives the simulation the ability to generate
wider range of values.
– Test extreme conditions.

• Theoretical distributions are a compact way
to represent very large datasets. Easy to
change, very practical.

Describing Distributions
A probability distribution is described by its family and
its parameters. The choice of family is usually made by
examining the density function, because this tends to
have a unique shape for each distribution family.

Distribution parameters are of three types:

location parameter(s) γ

scale parameter(s) β

shape parameter(s) α x

f(x)

γ1 γ3γ2

x

f(x)

β 1

β 2

β 3

x

α 1 α 2
α 3

f(x)

Selecting an Input Distribution
- Family

• The 1st step in any input distribution fit procedure
is to hypothesize a family (i.e. exponential).

• Prior knowledge about the distribution and its use
in the simulation can provide useful clues.
– Normal shouldn’t be used for service times,

since negative values can be returned.

• Mostly, we will use heuristics to settle on a
distribution family.

Determining the “Goodness”
of the Model

• As you might imagine, determine whether our
hypothesize model is “good”.

• Both heuristic and analytical tests exist to
determine “goodness”.

• Heuristic tests:
– Density/Histogram over plots.
– Frequency comparisons.
– Distribution function difference plots.
– Probability-Probability Plots (P-P plots).

• Analytical tests:
– Chi-Squared tests.
– Kolmogorov-Smirnov tests

