Empirical Discrete Distribution

• Find the random variate for the following discrete distribution.

Х	p(x)	
0	0.50	
1	0.30	
2	0.20	

• At first find the F

Х	p(x)	F(x)	
0	0.50	0.50	1
1	0.30	0.80	1
2	0.20	1.00	

$$F(x) = \begin{cases} 0, & x < 0 \\ 0.5, & 0 \le x < 1 \\ 0.8, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

Empirical Discrete Distribution

Empirical Discrete Distribution

Example of Empirical Distribution

There are four pumps(i-1 to 4) at a petrol station. And on average 1/3 of the customers used pump 1, 1/6 of them used pump 2, another 1/3 used pump 3 and the remaining 1/6 used pump 4. Outline a procedure for selection of pumps by various customers.

P(i) 1/3

F(i) 1/3

1/6

1/2

1/3

5/6 1

1/6

- The procedure:
- Generate r ~U(0,1)

If $0 \le r < 1/3$ select pump 1

If $1/3 \le r < 1/2$ select pump 2

If $1/2 \le r < 5/6$ select pump 3

If $5/6 \le r < 1$ select pump 4

Discrete Uniform Distribution

• Consider $p(x) = \frac{1}{k}, x = 1, 2, 3 \dots k$

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{k}, & 1 \le x < 2 \\ \frac{2}{k}, & 2 \le x < 3 \\ \vdots & \vdots \\ \frac{k-1}{k}, & k-1 \le x < k \\ 1, & k \le x \end{cases}$$

Discrete Uniform Distribution

• Generate R~U(0,1)

 $\frac{1}{k} < R \le \frac{2}{k}$ $\frac{2}{k} < R \le \frac{3}{k}$

$$\frac{k}{3} < R \le \frac{k}{4}$$

$$\frac{i-1}{k} < R \le \frac{i}{k}$$

Discrete Uniform Distribution

$$0 \le R \le \frac{1}{k}$$

$$\frac{1}{k} < R \le \frac{2}{k}$$

$$\frac{2}{k} < R \le \frac{3}{k}$$

$$\frac{3}{k} < R \le \frac{4}{k}$$

$$\frac{i-1}{k} < R \le \frac{i}{k}$$

$$\frac{i-1}{k} < R \le \frac{i}{k}$$

$$\Rightarrow i-1 < Rk \le i$$

$$\Rightarrow i-1 < Rk \le i$$

$$\Rightarrow i < Rk+1 \text{ and } Rk \le i$$

$$\Rightarrow Rk \le i < Rk+1$$

$$\Rightarrow i = \lfloor RK \rfloor = \text{output } X$$

$$\therefore X = \lfloor RK \rfloor$$

Discrete Uniform Distribution

- Algorithm to generate random variate for p(x)=1/k where x = 1, 2, 3, ... k
 - Generate R~U(0,1) uniform random number
 - Return [RK]