Discrete versus Continuous Random Variables

Discrete Random Variable	Continuous Random Variable
$p(x_i) = P(X = x_i)$ 1. $p(x_i) \ge 0$, for all i 2. $\sum_{i=1}^{\infty} p(x_i) = 1$	$f(x)$ 1. $f(x) \ge 0$, for all x in R_x 2. $\int_{R_x} f(x) dx = 1$ 3. $f(x) = 0$, if x is not in R_x
$p(X \le x) = \sum_{x_i \le x} p(x_i)$	$p(X \le x) = \int_{-\infty}^{x} f(t)dt = 0$ $p(a \le X \le b) = \int_{a}^{b} f(x)dx$

Mean and Variance

E(X) the expected value

Discrete: $E(x) = \sum x_i p(x_i)$

Continuous: $E(x) = \int_0^{\infty} xf(x)$

Var(x) the variance

Discrete $Var(X) = \sum_{i=0}^{n} (x_i - \mu_i)^2 . p(x_i) = \sum_{i=0}^{n} x_i^2 . p(x_i) - \left(\sum_{i=0}^{n} x_i . p(x_i)\right)^2$

Continuous $Var(X) = \int_{-\infty}^{\infty} (x - \mu_x)^2 \cdot f(x) dx = \left(\int_{-\infty}^{\infty} x^2 \cdot f(x) dx\right)^2 - \mu_x^2$

Example: Mean and variance

 When a die is thrown, each of the possible faces 1, 2, 3, 4, 5, 6 (the xi's) has a probability of 1/6 (the p(xi)'s) of showing. The expected value of the face showing is therefore:

```
\mu = E(X) = (1 \times 1/6) + (2 \times 1/6) + (3 \times 1/6) + (4 \times 1/6) + (5 \times 1/6) + (6 \times 1/6) = 3.5
```

Notice that, in this case, E(X) is 3.5, which is not a
possible value of X.

Variance

- ▶ The variance is a measure of the 'spread' of a distribution about its average value.
- ▶ Variance is symbolized by or Var(X) or σ^2
 - ▶ The mean is a way to describe the location of a distribution,
 - ▶ the variance is a way to capture its scale or degree of being spread out. The unit of variance is the square of the unit of the original variable.

Variance

▶ The Variance of the random variable X is defined as:

$$V(X) = \sigma_X^2 = E(X - E(X))^2 = E(X^2) - E(X)^2$$

- ▶ where E(X) is the expected value of the random variable X.
- ▶ The standard deviation is defined as the square root of the variance, i.e.:

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{V(X)} = s$$

Coefficient of Variation

 The Coefficient of Variance of the random variable X is defined as:

$$CV(X) = \frac{V(X)}{E(X)} = \frac{\sigma_X}{\mu_X}$$

Discrete Probability Distribution

- Bernoulli Trials
- Binomial Distribution
- Geometric Distribution
- Poisson Distribution
- Poisson Process

Bernoulli Trials

Any simple trial with two possible outcomes. p and q

EX: Tossing a coin, repeat, with counting # of success p "the number of heads"

Then # of failure q=(1-p), "the number of tails"

P(HHT) = p.p.q

P(TTT)=q.q.q

If we have k as the number of successes and n-k failures Then the probability is $p^{^k}q^{^{^{n-k}}}$

Binomial Random Variable

If we have $X: S \rightarrow \{0,1,2,3\}$

Where *X* is the number of successes

$$X(sss) = 3$$

$$X(sfs) = X(ssf) = 2$$
etc

X now is a random variable.

X is named Binomial random variable resulted from *n* Bernoulli trials denoted: b(n, p)

Modeling of Random Events with Two-States

Binomial Random Variable

 $0 \le k \le n$ Now the probability that X = kthat is all strings with k success and n - k fails, there are $\binom{n}{k}$ different ways $P(X = k) = \binom{n}{k} p^k q^{n-k}$

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

Remark: $\sum_{k=0}^{n} {n \choose k} p^k q^{n-k} = (p+q)^n = 1$

Geometric Random Variable

• Consider independent Bernoulli trials are performed until success *s*, *fs*, *ffs*, *fffs*,...

$$P(X = n) = P(fff...fs) = q^{n-1}p = pq^{n-1}$$

- Remark: $\sum_{n=1}^{\infty} pq^{n-1} = p(1+q+q^2+...) = p\frac{1}{1-q} = 1$
- Exr: For a geometric variable X compute P(X > k)

Geometric Random Variable

PMF:
$$p(X = k) = \begin{cases} q^{k-1}p, & k = 0,1,2,...,n \\ 0, & \text{otherwise} \end{cases}$$

CDF:
$$F(X) = p(X \le k) = 1 - (1 - p)^k$$

Expected Value :
$$E[X] = \frac{1}{p}$$

Variance :
$$V[X] = \sigma^2 = \frac{q}{p^2} = \frac{1-p}{p^2}$$

Uniform Random Variable

An R.V. Takes values 1,2,3,...n with equal probabilities

$$P(X = k) = \frac{1}{n}$$

$$\frac{\frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$$

Poisson

• For X = b(n, p) with large n and small p, it is useless to compute the exact P(X = k), as it involves huge calculations of factorial n

$$P(X = k) = \binom{n}{k} p^{k} q^{n-k} = \frac{n(n-1)....(n-k+1)}{fact(k)} p^{k} q^{n-k}$$

• For large n n-k is approximated to n

$$P(X = k) \approx \frac{n^k}{k!} p^k (1 - p)^n = \frac{(np)^k}{k!} \left[(1 - p)^{\frac{1}{p}} \right]^{np}$$

$$\lim_{k \to \infty} (1 - x)^{\frac{1}{k}} = e^{-1}$$

$$P(X = k) = \frac{(np)^k}{k!} e^{-np}$$

$$P(X = k) = \frac{(\lambda)^k}{k!} e^{-\lambda}, \lambda = np$$

Poisson

- Ex. A production line with .4 percent of its items are defective, n=500 items are taken for a quality control. What is the probability that 0, 1, 3 items of them are defective
- That is X=b(500,.004) aprox. To Poisson

$$P(X = k) = \frac{(\lambda)^k}{k!} e^{-\lambda}$$

$$\lambda = 500 * .004 = 2$$

$$P(x=0) = e^{-2}$$

$$P(x=1) = 2e^{-2}$$

$$P(x=3) = \frac{4}{3}e^{-2}$$

Example: Poisson Distribution

- The number of cars that enter the parking follows a Poisson distribution with a mean rate equal to $\lambda = 20$ cars/hour
 - The probability of having exactly 15 cars entering the parking in one hour:

$$p(15) = P(X = 15) = \frac{20^{15}}{15!} \cdot \exp(-20) = 0.051649$$

Applications of Poisson

- ▶ Context: number of events occurring in a fixed period of time
 - ▶ Events occur with a known average rate and are independent
- ▶ Possion distribution is characterized by the average rate λ
 - ▶ The average number of arrival in the fixed time period.

Examples

- The number of cars passing a fixed point in a 5 minute interval. Average rate: λ = 3 cars/5 minutes
- ► The number of calls received by a switchboard during a given period of time. Average rate: λ =3 call/minutes
- ▶ The number of message coming to a router per second
- ▶ The number of travelers arriving to the airport for flight registration

Poisson Distribution

• The Poisson distribution with the average rate parameter λ

PMF:
$$p(k) = P(X = k) = \begin{cases} \frac{\lambda^k}{k!} \exp(-\lambda) & \text{for } k = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

CDF:
$$F(k) = p(X \le k) = \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} \cdot \exp(-\lambda)$$

Expected value: $E[X] = \lambda$

Variance: $V[X] = \lambda$

Continuous Probability Distribution

- uniform Distribution
- exponential Distribution
- Normal Distribution
- Standard Normal Process

Continuous Uniform Distribution

- The continuous uniform distribution is a family of probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable
- A random variable X is uniformly distributed on the interval [a,b], U(a,b), if its PDF and CDF are:

PDF:
$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

PDF:
$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

CDF: $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$

Expected value: $E[X] = \frac{a+b}{2}$

Variance: $V[X] = \frac{(a+b)^2}{12}$

Expected value:
$$E[X] = \frac{a+b}{2}$$

Variance:
$$V[X] = \frac{(a+b)^2}{12}$$

Uniform Distribution U(a,b)

• The PDF is

$$f(x) = const = \frac{1}{b - a}$$

- Properties
 - $-p(x \le X \le x \ge 2)$ is proportional to the length of the interval

$$F(X_{2})-F(X_{1}) = \frac{X_{2}-X_{1}}{b-a}$$

- Special case: a standard uniform distribution U(0,1).
 - Very useful for random number generators in simulators

Exponential Distribution

PDF:
$$f(x) = \begin{cases} \lambda \cdot \exp(-\lambda \cdot x), & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

CDF:
$$F(x) = \begin{cases} 0, & x < 0 \\ \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

Exponential Distribution

$$f(x) = \begin{cases} \frac{1}{20} \cdot \exp\left(-\frac{x}{20}\right), & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - \exp\left(-\frac{x}{20}\right), & x \ge 0 \end{cases}$$

Exponential Distribution

- (Special interest)The exponential distribution describes the times between events in a Poisson process, in which events occur continuously and independently at a constant average rate.
- A random variable *X* is **exponentially distributed** with

A random variable
$$X$$
 is **exponentially distributed** with parameter $\mu=1/\lambda > 0$ if its PDF and CDF are:

PDF: $f(x) = \begin{cases} \lambda \cdot \exp(-\lambda \cdot x), & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$
 $f(x) = \begin{cases} \lambda \cdot \exp(-\frac{x}{\mu}), & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

CDF:
$$F(x) = \begin{cases} 0, & x < 0 \\ \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$
 $F(x) = \begin{cases} 0, & x < 0 \\ 1 - \exp\left(-\frac{x}{\mu}\right), & x \ge 0 \end{cases}$

Expected value:
$$E[X] = \frac{1}{\lambda} = \mu$$
 Variance: $V[X] = \frac{1}{\lambda^2} = \mu^2$

Exponential Distribution

- ▶ The memoryless property: In probability theory, memoryless is a property of certain probability distributions: the exponential distributions and the geometric distributions, wherein any derived probability from a set of random samples is distinct and has no information (i.e. "memory") of earlier samples.
- ► Formally, the memoryless property is: For all *s* and *t* greater or equal to 0:

$$p(X > s + t \mid X > s) = p(X > t)$$

▶ This means that the future event do not depend on the past event, but only on the present event

Normal Distribution

- The Normal distribution, also called the Gaussian distribution, is an important family of continuous probability distributions, applicable in many fields.
- Each member of the family may be defined by two parameters, location and scale: the mean ("average", μ) and variance (standard deviation squared, σ2) respectively.
- The importance of the normal distribution as a model of quantitative phenomena in the **natural** and **behavioral** sciences is due in part to the **Central Limit Theorem**.
- It is usually used to model system error (e.g. channel error), the distribution of natural phenomena, height, weight, etc.

Normal or Gaussian

Distribution
A continuous random variable X, taking all real values in the range $(-\infty, +\infty)$ is said to follow a Normal distribution with parameters μ and σ if it has the following PDF and

QDF:
PDF:
$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

CDF:
$$F(x) = \frac{1}{2} \cdot \left(1 + erf\left(\frac{x - \mu}{\sigma \cdot \sqrt{2}}\right) \right)$$

CDF: $F(x) = \frac{1}{2} \cdot \left(1 + erf\left(\frac{x - \mu}{\sigma \cdot \sqrt{2}}\right)\right)$ where Error Function: $erf(x) = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{x} \exp(-t^2)$

$$X \sim N\left(\mu, \sigma^2\right)$$

- The Normal distribution is denoted as
- This probability density function (PI
 - a symmetrical, bell-shaped curve
 - centered at its expected value μ.

Normal distribution

- Example
- The simplest case of the normal distribution, known as the Standard Normal Distribution, has expected value zero and variance one. This is written as N(0,1).

Normal or Gaussian Distribution

 A continuous random variable X, taking all real values in the range (-∞,+∞) is said to follow a Normal distribution with parameters μ and σ if it has the following PDF and CDF:

CDF:
PDF:
$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

CDF: $F(x) = \frac{1}{2} \cdot \left(1 + erf\left(\frac{x-\mu}{\sigma \cdot \sqrt{2}}\right)\right)$ where Error Function: $erf(x) = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{x} \exp\left(-t^2\right)$

- The Normal distribution is denoted as $_{X \sim N \left(\mu,\sigma^2\right)}$
- This probability density function (PDF) is
 - a symmetrical, bell-shaped curve,
 - centered at its expected value μ.
 - The variance is σ^2 .

Standard Normal Distribution

Independent of μ and σ , using the **standard normal distribution**:

- Transformation of variables: let

$$Z \sim N(0,1)$$

$$Z = \frac{X - \mu}{\sigma}$$

$$\begin{split} F(x) &= P\left(X \le x\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right) \\ &= \int_{-\infty}^{(x - \mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \\ &= \int_{-\infty}^{(x - \mu)/\sigma} \phi(z) dz = \Phi(\frac{x - \mu}{\sigma}) \quad \text{,where } \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \end{split}$$

Standard Normal Distribution

- Note that $f_Z(x)$ is positive for all $-\infty < x < \infty$, hence Z takes on all real values, its range is the entire real line. Also note that $f_Z(x)$ is an even function
- The graph of $f_{\mathbb{Z}}(x)$ is a bell-shaped curve, symmetric about the y-axis.
- This curve is called a gaussian curve. Its maximum is attained at x = 0, then it decreases on both sides of its top point. Actually, it decreases very fast.

Normal Distribution

- Example: The time required to load a transporting truck,
 X, is distributed as N(12,4)
 - The probability that the truck is loaded in less than 10 hours:

$$F(10) = \Phi\left(\frac{10-12}{2}\right) = \Phi(-1) = 0.1587$$

– Using the symmetry property, $\Phi(1)$ is the complement of Φ (-1)

Empirical Distributions

- An Empirical Distribution is a distribution whose parameters are the observed values in a sample of data.
 - May be used when it is impossible or unnecessary to establish that a random variable has any particular parametric distribution.
 - Advantage: no assumption beyond the observed values in the sample.
 - Disadvantage: sample might not cover the entire range of possible values.

Empirical Distributions

- ▶ In statistics, an empirical distribution function is a cumulative probability distribution function that concentrates probability 1/n at each of the n numbers in a sample.
- ▶ Let $x_1, ..., x_n$ be iid random variables in with the CDF equal to F(x).
- ▶ The empirical distribution function $F_n(x)$ based on sample $x_1, ..., x_n$ is a step function defined by

$$F_n(x) = \frac{\text{number of element in the sample } \le x}{n} = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le x)$$

where I(A) is the indicator of event A. $I(X_i \le x) = \begin{cases} 1 & \text{if } (X_i \le x) \\ 0 & \text{otherwise} \end{cases}$

For a fixed value x, $I(X_i \le x)$ is a **Bernoulli (Trial)** random variable with parameter p = F(x), hence $nF_n(x)$ is a **binomial** random variable with mean nF(x) and variance nF(x)(1-F(x)).