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Model Development Life Cycle

Define goals, objectives of study

Develop conceptual model

Develop specification of model

Develop computational model

Verify model

Validate model

Fundamentally an 

iterative process

Focus on 

these steps

Determine Goals and Objectives
• What do you hope to accomplish with the model

– May be an end in itself

• Predict the weather

• Train persons to develop certain skills (e.g., driving)

– More often a means to an end

• Optimize a manufacturing process or develop the most 
cost effective means to reduce traffic congestion in 
some part of a city

• Goals may not be known when you start the project!
– One often learns things along the way
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Develop Conceptual Model
• An abstract (i.e., not directly executable) representation 

of the system

• What should be included in model?  What can be left 
out?

• What abstractions should be used
– Level of detail

– Often a variation on standard abstractions

• What metrics will be produced by the model

• Appropriate choice depends on the purpose of the 
model

Develop Specification Model

• A more detailed specification of the model 
including more specifics

• Collect data to populate model
– Traffic example: Road geometry, signal timing, 

expected traffic demand, driver behavior

• Development of algorithms necessary to 
include in the model
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Develop Computational Model

• Executable simulation model

• Software approach
– General purpose programming language

– Special purpose simulation language

– Simulation package

– Approach often depends on need for 
customization and economics

Queueing Network Applications

Queueing networks useful for many applications

• Customers utilizing business services (e.g., bank, 
hospital, restaurant …)

• Manufacturing: assembly lines

• Supply chains

• Transportation (aircraft, vehicles)

• Computer communication networks

• Computer systems (jobs being processes by a set of 
compute servers; I/O systems)
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An Example: Single Server Queue

Outline

• Problem description

• Conceptual model: queuing networks

• Specification model

• Time stepped(Fixed time) implementation

Problem Description

A certain airport contains a single runway on which arriving 
aircraft must land.  Once an aircraft is cleared to land, it 
will use the runway, during which time no other aircraft can 
be cleared to land.  Once the aircraft has landed, the 
runway is available for use by other aircraft.  The landed 
aircraft remains on the ground for a certain period of time 
before departing.

The objective is to determine

• The average time an aircraft must wait when arriving at an 
airport before they are cleared to land

• The maximum number of aircrafts that will be on the 
ground at one time
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Problem Description
• The output metrics suggest focusing on

– Waiting process
– Number of aircraft on the ground

• We could develop a detailed model keeping 
track of the position of each aircraft every 
second, but this may be too much.

• Queuing models are a natural abstraction for 
modeling systems like these that include
– Customers competing to use limited resources
– Waiting (queuing) to use the resource
– Primary metrics of interest have to do with 

resource utilization, time customer is being served 
or waiting

– Details of what customer is doing while waiting are 
not important

Conceptual Model

• Customer (aircraft)

– Entities utilizing the system/resources

• Server (runway)

– Resource that is serially reused; serves one customer 
at a time

• Queue

– Buffer holding aircraft waiting to land

customerqueue
server
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Specification Model
�Customers
Schedule of aircraft arrivals: 

Often, probability distribution defines time between successive customer 
arrivals (interarrival time)

Assumes interarrival times independent, and identically distributed(iid)

Customer attributes? e.g., priorities 

�Servers

How much service time is needed for each customer?

May use probability distribution to specify customer service time (iid)

How many servers?

�Queue
Service discipline - who gets service next?

• First-in-first-out (FIFO), Last-in-first-out (LIFO), random …

• May depend on a property of the customer (e.g., priority, “smallest” 
first)

Specification Model
Assume

• Customers

– Assume arrivals are iid, following an exponential 
distribution for interarrival times with mean µ

– Assume all customers are identical (no specific 

attributes)

• Servers

– Assume customer service time is iid, exponentially 

distributed, mean λ

– Assume one server (one runway)

• Queue

– Assume first-in-first-out queue (first-come-first-serve) 

discipline

– Assume queue has unlimited capacity
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Computational Model
A computer simulation is a computer program that models the 

behavior of a physical system over time.  To do this, we 
must

• Define a computer representation of the state of the 
system, i.e., define state variables that encode the current 
state of the physical system

• Determine the state of the system over all points in time in 
which we are interested (compute a sample path)
– Define a simulation program that modifies state variables to model 

the evolution of the physical system over time.

Key questions

• What are the state variables?

• How does the state change (what rules are used)?

Discrete Event Simulation
Discrete event simulation: computer model for a system 

where changes in the state of the system occur at discrete

points in simulation time.

Fundamental concepts:

• system state (state variables)

• state transitions (events)

� each event has a timestamp indicating when it occurs

An DES computation can be viewed as a sequence of event 

computations, with each event computation is assigned a 

(simulation time) time stamp

Each event computation can

• modify state variables

• schedule new events



10/23/2014

8

State Variables (back to the ex.)

State:

• InTheAir: number of aircraft either landing or waiting to 

land

• OnTheGround: number of landed aircraft

• RunwayFree: Boolean, true if runway available

customerqueue
server

Events

• An event must be associated with any 

change in the state of the system

• Airport example:

– Event for an aircraft arrival (InTheAir, 
RunwayFree)

– Event for aircraft landing (InTheAir,
OnTheGround, RunwayFree)

– Event for aircraft departure 
(OnTheGround)
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Evolving System State

• Given the current state of the system, 

how do we determine the new system 

state?

• At which points in time (in the simulated 

system) we need to compute the 

system state: Two Approaches

– Fixed increment time advance (time 
stepped simulation)

– Next event time advance (Irregular) 
(typically, when the state changes)

Fixed Increment Time 
/* ignore aircraft departures */

Float InTheAir: # aircraft landing or waiting to land

Float OnTheGround: # landed aircraft

Boolean RunwayFree: True if runway available

Float NextArrivalTime: Time the next aircraft arrives

Float NextLanding: Time next aircraft lands (if one is landing)

For (Now = 1 to EndTime) { /* time step size is 1.0 */

if (Now >= NextArrivalTime) /* if aircraft just arrived */

{  InTheAir := InTheAir + 1;

NextArrivalTime := NextArrivalTime + RandExp( µ);

if (RunwayFree) 

{ RunwayFree := False;

NextLanding := Now + RandExp( λ);

}

}

if (Now >= NextLanding) /* if aircraft just landed */

{ InTheAir := InTheAir - 1;

OnTheGround := OnTheGround + 1;

if (InTheAir > 0) NextLanding := Now + RandExp(λ)

else {RunWayFree := True; NextLanding := EndTime+1;}

}
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Problems With Fixed 
increment time advance

• State changes may occur between time 

steps

– Use small time steps to minimize error

• Multiple state changes within the same 

time step may be processed in the 

wrong order

– Solvable by ordering state changes within 
time step (more work)

• Inefficient

– Many time steps no state changes occur, 
especially if small time steps

The Example: Air traffic…

Single runway for incoming aircraft, ignore departure queueing
• L = mean time runway used for each landing aircraft (exponential distrib.)

• G = mean time on the ground before departing (exponential distribution)

• A = mean interarrival time of incoming aircraft (exponential distribution)

State:
• Now: current simulation time

• InTheAir: number of aircraft landing or waiting to land

• OnTheGround: number of landed aircraft

• RunwayFree: Boolean, true if runway available

Events:

• Arrival: denotes aircraft arriving in air space of airport

• Landed: denotes aircraft landing

• Departure: denotes aircraft leaving
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Landing Event

Landed Event:

InTheAir:=InTheAir-1;

OnTheGround:=OnTheGround+1;

Schedule Departure event @ Now + RandExp(G);

If (InTheAir>0)

Schedule Landed event @ Now + RandExp(L);

Else

RunwayFree := TRUE;

• L = mean time runway is used for each landing aircraft

• G = mean time required on the ground before departing

• Now: current simulation time

• InTheAir: number of aircraft landing or waiting to land

• OnTheGround: number of landed aircraft

• RunwayFree: Boolean, true if runway available

An aircraft has completed its landing.

Arrival Event

Arrival Event:

InTheAir := InTheAir+1;

Schedule Arrival event @ Now + RandExp(A);

If (RunwayFree) {

RunwayFree:=FALSE;

Schedule Landed event @ Now + RandExp(L);

}

• A: mean interarrival time of incoming aircraft

• Now: current simulation time

• InTheAir: number of aircraft landing or waiting to land

• OnTheGround: number of landed aircraft

• RunwayFree: Boolean, true if runway available

New aircraft arrives at airport.  If the runway is free, it will begin

to land.  Otherwise, the aircraft must circle, and wait to land.
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Departure Event

Departure Event:

OnTheGround := OnTheGround - 1;

• Now: current simulation time

• InTheAir: number of aircraft landing or waiting to land

• OnTheGround: number of landed aircraft

• RunwayFree: Boolean, true if runway available

An aircraft now on the ground departs for a new

destination.

Execution Example

OnTheGround

Simulation Time

State

Variables

RunwayFree

InTheAir

0 1 2 3 4 5 6 7 8 9 10 11

true

0

0

Time Event

1   Arrival F1

3   Arrival F2

Now=0

Processing:

false

1

Time Event

4   Landed F1
3   Arrival F2

Arrival F1

Now=1

2

Time Event

4   Landed F1

Arrival F2

Now=3

1

Landed F1

Now=4

Time Event

8   Depart F1
7   Landed F2

0

2

true

Time Event

8   Depart F1

11   Depart F2

Landed F2

Now=7

Time Event

11   Depart F2

Depart F1

Now=8

0

Time Event

Depart F2

Now=11
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Discrete-Event Simulation
Logical Flow

Start

1. Set simulation clock = 0

2. Initialize system state 

and statistical counters

3. Initialize event list

0. Invoke the initialization routine

Repeatedly:

1. Invoke the timing routine

2. Invoke event routine i

1. Determine the next 

event type, say i

2. Advance the 

simulation clock

1. Update system state

2. Update statistical counters

3. Generate future events and add to event list

1. Compute estimates of interest

2. Write report

Is

simulation

over?

Stop

Main program

Event routine i

Timing routineInitialization routine

Report generator

Library routines

Generate random variates

No

Yes

26

Discrete-Event Simulation
Components

Initialization routine: A subprogram to initialize the 
simulation model at time 0

Timing routine: A subprogram that determines the next 
event from the event list and then advances the 
simulation clock to the time when the next event is to 
occur

Event routine: A subprogram that updates the system state 
when a particular type of event occurs (there is one 
event routing for each type of event)

Library routines: A set of subprograms used to generate 
random observations from probability distributions
that were determined as part of the simulation model
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Discrete-Event Simulation
Components

Report generator: A subprogram that computes 
estimates (from the statistical counters) of the 
desired measures of performance and produces 
a report when the simulation ends

Main program: A subprogram that invokes the 
timing routing to determine the next event and 
then transfers control to the corresponding event 
routine to update the system state appropriately. 
The main program may also check for 
termination and invoke the report generator 
when the simulation is over.

28

Discrete-Event Simulation
Stopping Rules

Number of events of a certain type reached 

a pre-defined value

Example: stop M/M/1 simulation after the 1000th

departure

Simulation time reaches a certain value; this 

is usually implemented by scheduling an 

“end-simulation” event at the desired 

simulation stop time.
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Output Statistics
Compute
• The maximum number of aircraft that will be 

on the ground at one time
• Average time an aircraft must wait before 

they are cleared to land

• Maximum on ground
– Variable for airport indicating number currently on 

ground
– Maximum “on the ground” so far

• Wait time
– Variables for airport indicating total wait time, 

number of aircraft arrivals
– State variable for each aircraft indicating arrival 

time

Probability

• Probability is a measure of how likely it 
is for an event to happen.

• We name a probability with a number 
from 0 to 1.  

• If an event is certain to happen, then the 
probability of the event is 1.

• If an event is certain not to happen, then 
the probability of the event is 0.
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Probability Vs Statistics
• In probability theory: R.V. is specified and their 

parameters are known.

• Goal: Compute probabilities of random values 

that these variables can take.

• In statistics: The values of random variables are 

known “ from experiment” but theoretical 

characteristics are unknown.

• Goal: To determine the unknown theoretical 

characteristics of R.V.

• Probability and Statistics are complementary 

subjects 31

What is an Event?

• In probability theory, an event is a set 

of outcomes (a subset of the sample 

space) to which a probability is 

assigned. 

• Typically, when the sample space is 

finite, any subset of the sample space is 

an event (i.e. all elements of the power 

set of the sample space are defined as 

events). 32
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Fundamentals
�We measure the probability for Random Events

�How likely an event would occur

�The set of all possible events is called Sample 
Space

�In each experiment, an event may occur with a 
certain probability (Probability Measure)

�Example:

�Tossing a dice with 6 faces

�The sample space is {1, 2, 3, 4, 5, 6}

�Getting the Event « 2 » in on experiment has a 

probability 1/6

Examples

• A single card is pulled (out of 52 cards).

– Possible Events

• having a red card (P=1/2); 

• Having a Jack (P= 1/13);

• Two true 6-sided dice are used to 

consider the event where the sum of the 

up faces is 10.

– P = 3 / 36 = 1/12

34



10/23/2014

18

� The probability of every set of possible events is between 0

and 1, inclusive.

� The probability of the whole set of outcomes is 1.

� Sum of all probability is equal to one

� Example for a dice: P(1)+P(2)+P(3)+ P(4)+P(5)+P(6)=1

� If A and B are two events with no common outcomes, then

the probability of their union is the sum of their probabilities.

� Event E1={1},

� Event E2 ={6}

� P(E1 v E2)=P(E1)+P(E2)

Probability

Random Variables

An Experiment: is a process whose outcome is 
not known with certainty

Sample Space: set of outcomes S

Ex: S= {H,T} , S= {1,2,3,4,5,6}

Random Variable: also known as stochastic 
variable. is a function that assigns a real 
number to each point in the space

Random Variable is either discrete or 
continuous
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A random variable: Examples.

►The waiting time of a customer in a queue

►The number of cars that enters the parking each

hour

►The number of students that succeed in the exam

Probability Distribution
�The probability distribution of a discrete 

random variable is a list of probabilities 

associated with each of its possible values. 

� It is also sometimes called the probability

function or the probability mass function 

(PMF) for discrete random variable.
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Probability Mass Function 

(PMF)
� the probability distribution or probability mass 

function (PMF) of a discrete random variable X 

is a function that gives the probability p(xi) that the 

random variable equals some value xi, for each 

value xi: 

� It satisfies the following conditions: 

( )0 1≤ ≤ip x

( ) 1=∑ i

i

p x

( ) ( )= =i ip x P X x

Probability Mass Function

PMF of a fair Dice

40
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Continuous Random Variable
�A continuous random variable is 

one which takes an infinite number of 

possible values. 

�Continuous random variables are 

usually measurements. 

�Examples include height, weight, the 

amount of sugar in an orange, the 

time required to run a mile.

Distribution function aggregates
� For the case of continuous variables, we do not

want to ask what the probability of "1/6" is, because

the answer is always 0...

� Rather, we ask what is the probability that the

value is in the interval (a,b).

� So for continuous variables, we care about the

derivative of the distribution function at a point (that's

the derivative of an integral). This is called a

probability density function (PDF).

� The probability that a random variable has a value in

a set A is the integral of the p.d.f. over that set A.



10/23/2014

22

Probability Density Function (PDF)
� The Probability Density Function (PDF) of a 

continuous random variable is a function that can be 

integrated to obtain the probability that the random 

variable takes a value in a given interval. 

� More formally, the probability density function, f(x), of a 

continuous random variable X is the derivative of the 

cumulative distribution function F(x): 

� Since F(x)=P(X≤x), it follows that: 

( ) ( )=
d

f x F x
dx

( ) ( ) ( ) ( )
b

a

F b F a P a X b f x dx− = ≤ ≤ = ⋅∫

Cumulative Distribution 

Function (CDF)
�The Cumulative Distribution Function 

(CDF) is a function giving the probability 

that the random variable X is less than or 

equal to x, for every value x. 

�Formally

� the cumulative distribution function F(x) is 
defined to be: 

( ) ( )

,  ∀ − ∞ < < +∞

= ≤

x

F x P X x
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Cumulative Distribution 

Function (CDF)
� For a discrete random variable, the cumulative 

distribution function is found by summing up the 

probabilities as in the example below.

� For a continuous random variable, the cumulative 

distribution function is the integral of its probability 
density function f(x).

( ) ( )

,  

( ) ( )

≤ ≤

∀ − ∞ < < +∞

= ≤ = = =∑ ∑
i i

i i

x x x x

x

F x P X x P X x p x

( ) ( ) ( ) ( )− = ≤ ≤ = ⋅∫
b

a

F a F b P a X b f x dx

Cumulative Distribution 

Function (CDF)
►EX- Discrete case: Suppose a random 

variable X has the following probability mass 
function p(xi): 

►The cumulative distribution function F(x) is 

then: 

xi  0 1 2 3 4 5 

p(xi)  1/32 5/32 10/32 10/32 5/32 1/32 

 

xi  0 1 2 3 4 5 

F(xi)  1/32 6/32 16/32 26/32 31/32 32/32 
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Discrete Distribution Function

Mean or Expected Value

Expectation of  discrete random variable X

Expectation of continuous random variable X

( ) ( )
1

n

X i i

i

E X x p xµ

=

= = ⋅∑

( ) ( )X E X x f x dxµ

+∞

−∞

= = ⋅∫
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Example: Mean and variance

• When a die is thrown, each of the possible faces 1, 2, 3, 

4, 5, 6 (the xi's) has a probability of 1/6 (the p(xi)'s) of 

showing. The expected value of the face showing is 

therefore:

µ = E(X) = (1 x 1/6) + (2 x 1/6) + (3 x 1/6) + (4 

x 1/6) + (5 x 1/6) + (6 x 1/6) = 3.5

• Notice that, in this case, E(X) is 3.5, which is not a 

possible value of X. 

Variance

� The variance is a measure of the 'spread' of a 

distribution about its average value.

� Variance is symbolized by V(X) or Var(X) or σ2.

� The mean is a way to describe the location of a 

distribution, 

� the variance is a way to capture its scale or degree 

of being spread out. The unit of variance is the 

square of the unit of the original variable.
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Variance
� The Variance of the random variable X is defined 

as:

� where E(X) is the expected value of the random 

variable X.

� The standard deviation is defined as the square 
root of the variance, i.e.:

( ) ( )( ) ( ) ( )
2 22 2

XV X E X E X E X E Xσ= = − = −

( )2
X X V X sσ σ= = =

Coefficient of Variation

• The Coefficient of Variance of the random variable 
X is defined as:

( )
( )

( )
X

X

V X
CV X

E X

σ

µ
= =
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Bernoulli Trials

Any simple trial with two possible outcomes. 

EX: Tossing a coin, repeat, with counting # of success p  

“ the number of heads”

Then # of failure q ( 1-p) , “ the number of tails”

P(HHT) =p.p.q

P(TTT)=q.q.q


