7/30/2016

Chapter 5 — System Modeling

< Context models

< Interaction models

< Structural models

< Behavioral models

< Model-driven engineering

Chapter 5 System modeling

7/30/2016

System modeling

<- System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system.

< System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML).

< System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

Chapter 5 System modeling

7/30/2016

Existing and planned system models

< Models of the existing system are used during requirements
engineering. They help clarify what the existing system does
and can be used as a basis for discussing its strengths and
weaknesses. These then lead to requirements for the new
system.

<> Models of the new system are used during requirements
engineering to help explain the proposed requirements to
other system stakeholders. Engineers use these models to
discuss design proposals and to document the system for
implementation.

< In a model-driven engineering process, it is possible to
generate a complete or partial system implementation from
the system model.

Chapter 5 System modeling 3

7/30/2016

System perspectives

< An external perspective, where you model the context or
environment of the system.

< An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

< A structural perspective, where you model the
organization of a system or the structure of the data that
IS processed by the system.

<> A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

Chapter 5 System modeling 4

7/30/2016

UML diagram types

< Activity diagrams, which show the activities involved in a
process or in data processing .

< Use case diagrams, which show the interactions
between a system and its environment.

<- Sequence diagrams, which show interactions between

actors and the system and between system components.

<~ Class diagrams, which show the object classes in the
system and the associations between these classes.

<~ State diagrams, which show how the system reacts to
internal and external events.

Chapter 5 System modeling

7/30/2016

Use of graphical models

<> As a means of facilitating discussion about an existing or
proposed system

= |Incomplete and incorrect models are OK as their role is to
support discussion.

< As a way of documenting an existing system

= Models should be an accurate representation of the system but
need not be complete.

< As a detailed system description that can be used to
generate a system implementation

» Models have to be both correct and complete.

Chapter 5 System modeling 6

7/30/2016

Context models

< Context models are used to illustrate the operational
context of a system - they show what lies outside the
system boundaries.

< Social and organisational concerns may affect the
decision on where to position system boundaries.

< Architectural models show the system and its
relationship with other systems.

Chapter 5 System modeling

7/30/2016

System boundaries

<- System boundaries are established to define what is
inside and what is outside the system.

» They show other systems that are used or depend on the system
being developed.

< The position of the system boundary has a profound
effect on the system requirements.
< Defining a system boundary is a political judgment

» There may be pressures to develop system boundaries that
increase / decrease the influence or workload of different parts of
an organization.

Chapter 5 System modeling 8

7/30/2016

The context of the MHC-PMS

E T EniTa
LM

Patient recosd
E1 A bl
! sl '
! Eianaprmeend
| reporting
systems
P -0l T T I
-I!JI-I-III I
MHCPS |
- o 1
L B
H statistics
SyEEEm E—
'ﬁ"!'i-ll.'lll.'
Appointments
SFEEm

Chapter 5 System modeling

aFyEiEme
B rreccinme
PRI S

System

inpsheme
Prescription
system

7/30/2016

Process perspective

< Context models simply show the other systems in the
environment, not how the system being developed is
used in that environment.

<> Process models reveal how the system being developed
is used in broader business processes.

< UML activity diagrams may be used to define business
process models.

Chapter 5 System modeling 10

10

7/30/2016

Process model of involuntary detention

E u
I Trancdor tn
anser o

i ailahl - y
|rar asailahle] l-.:.:'_ﬂ:l:l! sratlm"_-

¢ Confam .\‘-|
detendion -
i decisson ,fFrﬂd sremr?"

‘. plage .,
e - o Trarsfer ta ¥

1
aunilahle ital |
[Mangerus] [l e hespetel

i ™,
Fa

1 o
;'I I :
| v
¢ Recoid ™ - i
S 1 1 { Admitto %
-| detertion |] |l heerita |
Y dedsicn L S S
- - dar_geris "

| asystems

ssysheme Admissions
MHC-PAIS system

Chapter 5 System modeling

i Irifarm

'.anci.*_' :.auh:_l_{'

P e
(i el

I_ aof kin A
Updatbe
register

ESYEIAM 2
MHLT-PM5

11

11

7/30/2016

Interaction models

< Modeling user interaction is important as it helps to
identify user requirements.

<> Modeling system-to-system interaction highlights the
communication problems that may arise.

<> Modeling component interaction helps us understand if a
proposed system structure is likely to deliver the required
system performance and dependability.

< Use case diagrams and sequence diagrams may be
used for interaction modeling.

Chapter 5 System modeling 12

12

7/30/2016

Use case modeling

< Use cases were developed originally to support
requirements elicitation and now incorporated into the
UML.

<> Each use case represents a discrete task that involves
external interaction with a system.

< Actors in a use case may be people or other systems.

< Represented diagrammatically to provide an overview of
the use case and in a more detailed textual form.

Chapter 5 System modeling 13

13

7/30/2016

Transfer-data use case

< A use case in the MHC-PMS

—CE H’“f;ransf-a-r -:I-'-r;':u - Q
A S .

fdedical recept anist Pat =n" record swvskem

Chapter 5 System modeling 14

14

7/30/2016

Tabular description of the ‘“Transfer data’ use-

case

Actors

Description

Data
Stimulus
Response

Comments

Medical receptionist, patient records system (PRS)

A receptionist may transfer data from the MHC-PMS to a
general patient record database that is maintained by a
health authority. The information transferred may either
be updated personal information (address, phone
number, etc.) or a summary of the patient’s diagnosis
and treatment.

Patient’s personal information, treatment summary

User command issued by medical receptionist
Confirmation that PRS has been updated

The receptionist must have appropriate security
permissions to access the patient information and the
PRS.

Chapter 5 System modeling

15

15

7/30/2016

Use cases in the MHC-PMS involving the role
‘Medical Receptionist’

4 Unregister ™
LY TR 4
v patent <
e
Q : ¢ Wi patient™
ey S imfa, A
" i
Wi 24l P
reveprisnsh - e
ﬁlaﬂsier data ::,

"

¢ Contat ™,
h_ patient

Chapter 5 System modeling

16

16

7/30/2016

Sequence diagrams

<> Sequence diagrams are part of the UML and are used to
model the interactions between the actors and the
objects within a system.

< A sequence diagram shows the sequence of interactions

that take place during a particular use case or use case

instance.

< The objects and actors involved are listed along the top
of the diagram, with a dotted line drawn vertically from

these.

< Interactions between objects are indicated by annotated

arrows.

Chapter 5 System modeling

17

17

7/30/2016

Sequence diagram for View patient information

Medica Recephinr. st

i F; Fatiendinfo

i 0 MHCPIAS-DE AS: Awithorization |

| =0

Mimwinfz (HEG

[authorzation CE|

[autharization fail]

i
T

;_|-|'|'_|:| e .
weiknrize dAfa,
1] u]]

Adrthangaticn
- 1

Paheontina
-

Ersr pnin aaressl
- 11

Chapter 5 System modeling

18

18

7/30/2016

Sequence diagram for Transfer Data

Mrdica Ercrpliar. st

I*F 4

% I F: Fatientinfa ID' MHCPMS-D8 |A5' ﬁutnnr:zatiml j?

[sendindo]

Apdateinfal b

[sendSummary]

Updataurr T

[apdstebRrS (LD

1 andhnze F LG
.

satharizatin

Rleasagn R0 4
e

summange (L)
-

a atharize (TF, L0
| -

atdlcizabar
B

Maessape (IR

lograt o}

Chapter 5 System modeling

lagim {; .
L adats LRI
Jpdate DK
F| STy
apdade (9100
-
Jpdate DK

19

19

7/30/2016

Structural models

< Structural models of software display the organization of

a system in terms of the components that make up that

system and their relationships.

< Structural models may be static models, which show the
structure of the system design, or dynamic models,
which show the organization of the system when it is

executing.

< You create structural models of a system when you are

discussing and designing the system architecture.

Chapter 5 System modeling

20

20

7/30/2016

Class diagrams

<~ Class diagrams are used when developing an object-
oriented system model to show the classes in a system
and the associations between these classes.

< An object class can be thought of as a general definition
of one kind of system object.

< An association is a link between classes that indicates
that there is some relationship between these classes.

< When you are developing models during the early stages
of the software engineering process, objects represent
something in the real world, such as a patient, a
prescription, doctor, etc.

Chapter 5 System modeling 21

21

7/30/2016

UML classes and association

Patient | i

Chapter 5 System modeling

22

22

7/30/2016

Classes and associations in the MHC-PMS

Cordition |

I F

| CrneaManl |
|
rederredn
l.:
| 4 l.” | 4
Pabient |)
- agrase- rilerrec by
vairh Lt
attands
I n
LI 1 P
ConsuHlation
. e
1 L |
r.ii5 [resriibes
|..q 1
Hospital
Doctor

Chapter 5 System modeling

e reral
practificner

{1 Medicatenn

Treabmend

23

23

7/30/2016

The Consultation class

Consultaticen

[Cactars

b

Time

Climsc

Reason

Miedication presonbed
Treatment Fd'ﬁi:ri'l:md
Poice nokes

Transcrpt

Bl

Freso
HecordMotes {
Transorbe ()

Chapter 5 System modeling

24

24

7/30/2016

Generalization

<> Generalization is an everyday technique that we use to
manage complexity.

< Rather than learn the detailed characteristics of every
entity that we experience, we place these entities in
more general classes (animals, cars, houses, etc.) and
learn the characteristics of these classes.

< This allows us to infer that different members of these
classes have some common characteristics e.g.
squirrels and rats are rodents.

Chapter 5 System modeling

25

25

7/30/2016

Generalization

< In modeling systems, it is often useful to examine the classes in
a system to see if there is scope for generalization. If changes
are proposed, then you do not have to look at all classes in the
system to see if they are affected by the change.

< In object-oriented languages, such as Java, generalization is
implemented using the class inheritance mechanisms built into

the language.

< In a generalization, the attributes and operations associated with

higher-level classes are also associated with the lower-level

classes.

< The lower-level classes are subclasses inherit the attributes and

operations from their superclasses. These lower-level classes
then add more specific attributes and operations.

Chapter 5 System modeling

26

26

7/30/2016

A generalization hierarchy

Hespital
aector

Consubant Teamdi<rs:

Traines
elel)

Chapter 5 System modeling

e neal

[P Tinarer

G aldiad
dectnr

27

27

7/30/2016

A generalization hierarchy with added detail

[0k

b ame
Paar:s ¢
Er=

Lol HAH
de reg ster (1

Hocpital doctar

Stalf &
Pxaer #

Cenerd prarhingener

| ELI T gt
addreis

Chapter 5 System modeling

28

28

7/30/2016

Object class aggregation models

< An aggregation model shows how classes that are
collections are composed of other classes.

< Aggregation models are similar to the part-of relationship
in semantic data models.

Chapter 5 System modeling 29

29

7/30/2016

The aggregation association

- "
1 - LY]
1 v "]
| l1."
Fadignt £ angilkation

Chapter 5 System modeling

30

30

7/30/2016

Behavioral models

< Behavioral models are models of the dynamic behavior
of a system as it is executing. They show what happens
or what is supposed to happen when a system responds
to a stimulus from its environment.

< You can think of these stimuli as being of two types:

= Data Some data arrives that has to be processed by the system.

= Events Some event happens that triggers system processing.
Events may have associated data, although this is not always
the case.

Chapter 5 System modeling 31

31

7/30/2016

Data-driven modeling

< Many business systems are data-processing systems
that are primarily driven by data. They are controlled by
the data input to the system, with relatively little external

event processing.

< Data-driven models show the sequence of actions
involved in processing input data and generating an

associated output.

< They are particularly useful during the analysis of

requirements as they can be used to show end-to-end

processing in a system.

Chapter 5 System modeling

32

32

7/30/2016

An activity model of the insulin pump’s
operation

— T —
Bl si.gnr £ 24 senzar | sensee | {" Lampue ™ [land suzar

b
= H gar
H =

Fi g or i -E_"h b | -i Aara i i"\. g e ir-.-r-ij’ -'I o

S Caluiatn ™,
I imsalie |
b drelierry f
e £ el Y T ¢ bt ™ D feetie
......... I i PUmp cantn | “pimp fr.sudir
| [--imp | L PLTP ,.l- | i s | I'-g:rr-n:n-'_lr_- ,.l- B iirergnt
T - e i

Chapter 5 System modeling

33

33

7/30/2016

Order processing

1*.rraase abicer

%

Fillim & 3
.

| fder

Srpahes

sdatastones . :
| Bl'x:lw | | Orden —E

walide o !

[walidab 2 k|

| Lipdaze parmouat]

Sawe L
Send [

34

Chapter 5 System modeling

34

7/30/2016

Event-driven modeling

< Real-time systems are often event-driven, with minimal
data processing. For example, a landline phone
switching system responds to events such as ‘receiver
off hook’ by generating a dial tone.

< Event-driven modeling shows how a system responds to

external and internal events.

< It is based on the assumption that a system has a finite
number of states and that events (stimuli) may cause a
transition from one state to another.

Chapter 5 System modeling

35

35

7/30/2016

State machine models

<> These model the behaviour of the system in response to
external and internal events.

< They show the system’s responses to stimuli so are
often used for modelling real-time systems.

< State machine models show system states as nodes and
events as arcs between these nodes. When an event
occurs, the system moves from one state to another.

<~ Statecharts are an integral part of the UML and are used
to represent state machine models.

Chapter 5 System modeling 36

36

7/30/2016

State diagram of a microwave oven

Canel

=
o
f

[o display |
k.

Full —
pewer |/ Full pmnrﬁ‘.
: ‘| o s powees |
b, o= 80D S
e —
. Timar
7 Waiting ™
& 1 do dcplay | e S Dneration ™
\ i -r..I Eull £ Gattime \._ ¢ Dperation ™,
pruc | dor: get pumber l do: cperate
Half et set time/ | e
Hall Pt e -
prae Lngq
" Ti |50
T rlise start
Tacag-
S S i D I B [enr
¢ Half power ™ ¢ Enmabled H0RN
4 do: sat power Dmar da: display
L =300 J dlosed b 'Ready’ S
—
¢ Disabled
do: display
'l.'laihrng'._l_.'

Chapter 5 System modeling

|.l.|=.:;:_ -
ARSI

time

-
W

A

37

37

7/30/2016

States and stimuli for the microwave oven (a)

Waiting

Half power
Full power

Set time
Disabled
Enabled

Operation

The oven is waiting for input. The display shows the current time.
The oven power is set to 300 watts. The display shows ‘Half power’.
The oven power is set to 600 watts. The display shows ‘Full power’.

The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook'’.

Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for five
seconds. Oven light is on. Display shows ‘Cooking complete’ while
buzzer is sounding.

Chapter 5 System modeling 38

38

7/30/2016

States and stimuli for the microwave oven (b)

Half power

Full power

Timer

Number
Door open
Door closed
Start

Cancel

The user has pressed the half-power button.

The user has pressed the full-power button.

The user has pressed one of the timer buttons.

The user has pressed a numeric key.
The oven door switch is not closed.
The oven door switch is closed.

The user has pressed the Start button.

The user has pressed the Cancel button.

Chapter 5 System modeling

39

39

7/30/2016

Microwave oven operation

& D oo ™
| Dperatian S
¢ Checking -,
| | T3 I-"'- Conk !
| stafus _.I \._ Renwator’
o A _ B
Timtasis Erinr Tirmeaui
faull Faak
—_—
.5-’ =0 -H\'-\. il--- DD‘E H-li
i lanm]
[cmspiay | | rin Pummer o |
| R far > secs,s
Y, mwent ™ TOr 3 ERCE
N P
Crionn wpen -
)) - . Lanze
L Y
| Disabl=l | weahing |-
e A M A

Chapter 5 System modeling

40

40

7/30/2016

Model-driven engineering

<> Model-driven engineering (MDE) is an approach to
software development where models rather than
programs are the principal outputs of the development
process.

< The programs that execute on a hardware/software
platform are then generated automatically from the
models.

< Proponents of MDE argue that this raises the level of
abstraction in software engineering so that engineers no
longer have to be concerned with programming
language details or the specifics of execution platforms.

Chapter 5 System modeling 41

41

7/30/2016

Usage of model-driven engineering

<> Model-driven engineering is still at an early stage of
development, and it is unclear whether or not it will have
a significant effect on software engineering practice.

< Pros
= Allows systems to be considered at higher levels of abstraction

= Generating code automatically means that it is cheaper to adapt

systems to new platforms.

< Cons

= Models for abstraction and not necessarily right for
implementation.

= Savings from generating code may be outweighed by the costs
of developing translators for new platforms.

Chapter 5 System modeling

42

42

7/30/2016

Model driven architecture

<> Model-driven architecture (MDA) was the precursor of
more general model-driven engineering

< MDA is a model-focused approach to software design

and implementation that uses a subset of UML models to

describe a system.

<> Models at different levels of abstraction are created.
From a high-level, platform independent model, it is
possible, in principle, to generate a working program
without manual intervention.

Chapter 5 System modeling

43

43

7/30/2016

Types of model

< A computation independent model (CIM)

» These model the important domain abstractions used in a
system. CIMs are sometimes called domain models.

< A platform independent model (PIM)

» These model the operation of the system without reference to its
implementation. The PIM is usually described using UML models
that show the static system structure and how it responds to
external and internal events.

< Platforrm speciic moaels (PSH)

» These are transformations of the platform-independent model
with a separate PSM for each application platform. In principle,
there may be layers of PSM, with each layer adding some
platform-specific detail.

Chapter 5 System modeling 44

44

7/30/2016

MDA transformations

Computation | | Petorm 0 | praorm
model || modd | || T modei
= | = 5 _
¥ - ¥
[Trasislabor | TFranslatar |
I | |
£ £ i
Deenaim spazifie i O Flatiarm | I
guidalines I I speedilic patterns I I
and rules
i | 5

Chapter 5 System modeling

45

7/30/2016

Multiple platform-specific models

! | [

| JZEE Transiatar | --l e |_ -
&
Platfarm
| independent |
| madel |
e
"
%4k Trareluhnr | |..| HET spe=tific || _ {f code
............... | ol - gameratar

Chapter 5 System modeling

46

46

7/30/2016

Agile methods and MDA

<> The developers of MDA claim that it is intended to
support an iterative approach to development and so can
be used within agile methods.

< The notion of extensive up-front modeling contradicts the
fundamental ideas in the agile manifesto and | suspect
that few agile developers feel comfortable with model-
driven engineering.

< If transformations can be completely automated and a
complete program generated from a PIM, then, in
principle, MDA could be used in an agile development
process as no separate coding would be required.

Chapter 5 System modeling 47

47

7/30/2016

Executable UML

< The fundamental notion behind model-driven
engineering is that completely automated transformation
of models to code should be possible.

< This is possible using a subset of UML 2, called
Executable UML or xUML.

Chapter 5 System modeling 48

48

7/30/2016

Features of executable UML

< To create an executable subset of UML, the number of
model types has therefore been dramatically reduced to

these 3 key types:

= Domain models that identify the principal concerns in a system.
They are defined using UML class diagrams and include objects,
attributes and associations.

= Class models in which classes are defined, along with their
attributes and operations.

= State models in which a state diagram is associated with each
class and is used to describe the life cycle of the class.

< The dynamic behavior of the system may be specified

declaratively using the object constraint language (OCL),
or may be expressed using UML’s action language.

Chapter 5 System modeling 49

49

