
Agile project management
• The principal responsibility of software project

managers is to manage the project so that the
software is delivered on time and within the planned
budget for the project.

• The standard approach to project management is
plan-driven. Managers draw up a plan for the project
showing what should be delivered, when it should be
delivered and who will work on the development of
the project deliverables.

• Agile project management requires a different
approach, which is adapted to incremental
development and the particular strengths of agile
methods.

1Chapter 3 Agile software development

Scrum
• The Scrum approach is a general agile method but

its focus is on managing iterative development
rather than specific agile practices.

• There are three phases in Scrum.

– The initial phase is an outline planning phase where
you establish the general objectives for the project and
design the software architecture.

– This is followed by a series of sprint cycles, where each
cycle develops an increment of the system.

– The project closure phase wraps up the project,
completes required documentation such as system
help frames and user manuals and assesses the lessons
learned from the project.

Chapter 3 Agile software development 2

The Scrum process

3Chapter 3 Agile software development

The Sprint cycle

• Sprints are fixed length, normally 2–4 weeks. They

correspond to the development of a release of the

system in XP.

• The starting point for planning is the product backlog,

which is the list of work to be done on the project.

• The selection phase involves all of the project team

who work with the customer to select the features

and functionality to be developed during the sprint.

4Chapter 3 Agile software development

The Sprint cycle

• Once these are agreed, the team organize themselves
to develop the software. During this stage the team is
isolated from the customer and the organization, with
all communications channelled through the so-called
‘Scrum master’.

• The role of the Scrum master is to protect the
development team from external distractions.

• At the end of the sprint, the work done is reviewed
and presented to stakeholders. The next sprint cycle
then begins.

5Chapter 3 Agile software development

Teamwork in Scrum

• The ‘Scrum master’ is a facilitator who arranges daily
meetings, tracks work to be done, records decisions,
measures progress and communicates with customers
and management outside of the team.

• The whole team attends short daily meetings where
all team members share information, describe their
progress since the last meeting, problems that have
arisen and what is planned for the following day.
– This means that everyone on the team knows what is going

on and, if problems arise, can re-plan short-term work to
cope with them.

Chapter 3 Agile software development 6

Scrum benefits

• The product is broken down into a set of manageable
and understandable chunks.

• Unstable requirements do not hold up progress.

• The whole team have visibility of everything and
consequently team communication is improved.

• Customers see on-time delivery of increments and
gain feedback on how the product works.

• Trust between customers and developers is
established and a positive culture is created in which
everyone expects the project to succeed.

Chapter 3 Agile software development 7

Scaling agile methods

• Agile methods have proved to be successful for small and

medium sized projects that can be developed by a small co-

located team.

• The need for faster delivery of software (suits the customer

needs)

• It is sometimes argued that the success of these methods

comes because of improved communications which is

possible when everyone is working together.

• Scaling up agile methods involves changing these to cope

with larger, longer projects where there are multiple

development teams, perhaps working in different locations.
8Chapter 3 Agile software development

Large systems development

• Large systems are usually collections of separate,

communicating systems, where separate teams develop

each system. Frequently, these teams are working in

different places, sometimes in different time zones.

• Large systems are ‘brownfield systems’, that is they

include and interact with a number of existing systems.

Many of the system requirements are concerned with

this interaction and so don’t really lend themselves to

flexibility and incremental development.

9Chapter 3 Agile software development

Large systems development

• Where several systems are integrated to create a system,

a significant fraction of the development is concerned

with system configuration rather than original code

development.

• Large systems and their development processes are often

constrained by external rules and regulations limiting the

way that they can be developed.

10Chapter 3 Agile software development

Large system development

• Large systems have a long procurement and development

time. It is difficult to maintain coherent teams who know

about the system over that period as, unavoidably, people

move on to other jobs and projects.

• Large systems usually have a diverse set of stakeholders.

It is practically impossible to involve all of these different

stakeholders in the development process.

11Chapter 3 Agile software development

Scaling out and scaling up

• ‘Scaling up’ is concerned with using agile methods for
developing large software systems that cannot be
developed by a small team.

• ‘Scaling out’ is concerned with how agile methods can
be introduced across a large organization with many
years of software development experience.

• When scaling agile methods it is essential to maintain
agile fundamentals
– Flexible planning, frequent system releases, continuous

integration, test-driven development and good team
communications.

Chapter 3 Agile software development 12

Scaling up to large systems
• For large systems development, it is not possible to focus only on

the code of the system. You need to do more up-front design

(requirements fixing bugs) and system documentation

• Cross-team communication mechanisms have to be designed

and used. This should involve regular phone and video

conferences between team members and frequent, short

electronic meetings where teams update each other on

progress.

• Continuous integration, where the whole system is built every

time any developer checks in a change, is practically impossible.

However, it is essential to maintain frequent system builds and

regular releases of the system.
13Chapter 3 Agile software development

Scaling out to large companies

Difficulties

• Project managers who do not have experience of agile

methods may be unwilling to accept the risk of a new

approach.

• Large organizations often have quality procedures and

standards that all projects are expected to follow and,

because of their bureaucratic nature, these are likely to be

incompatible with agile methods.

14Chapter 3 Agile software development

Scaling out to large companies

Difficulties

• Agile methods seem to work best when team members

have a relatively high skill level. However, within large

organizations, there are likely to be a wide range of skills

and abilities.

• There may be cultural resistance to agile methods,

especially in those organizations that have a long history of

using conventional systems engineering processes.

15Chapter 3 Agile software development

Key points

• A particular strength of extreme programming is the
development of automated tests before a program
feature is created. All tests must successfully execute
when an increment is integrated into a system.

• The Scrum method is an agile method that provides a
project management framework. It is centred round a
set of sprints, which are fixed time periods when a
system increment is developed.

• Scaling agile methods for large systems is difficult.
Large systems need up-front design and some
documentation.

16Chapter 3 Agile software development

