Extreme programming practices

Pair Developers work in pairs, checking
programming each other’s work and providing the
support to always do a good job.

Collective The pairs of developers work on all\
ownership areas of the system, so that no islands
of expertise develop and all the
developers take responsibility for all of
the code. Anyone can change anything.
Continuous As soon as the work on a task is
integration complete, it is integrated into the whole

system. After any such integration, all
the unit tests in the system must pass.

Extreme programming practices (b)

|Sustainable Large amounts of overtime are not
pace considered acceptable as the net effect
is often to reduce code quality and
medium term productivity

On-site A representative of the end-user of the
customer system (the customer) should be
available full time for the use of the XP
team. In an extreme programming
process, the customer is a member of
the development team and s
responsible for bringing system
requirements to the team for|
implementation.

Requirements scenarios

* In XP, a customer or user is part of the XP team and
is responsible for making decisions on requirements.

* User requirements are expressed as scenarios or
user stories.

* These are written on cards and the development
team break them down into implementation tasks.
These tasks are the basis of schedule and cost
estimates.

* The customer chooses the stories for inclusion in the
next release based on their priorities and the
schedule estimates.

A ‘nrocrrihineg maodicatin
A prescrip! eqgicatio

o n’ ctnryu
ngm Sto!

Vi Y
Presonbhng medlcatien

Thaa rergod o <k pat s ol e cnen dee np Chek o e medicadinr, hed ansd
selret witae corent medicstiar, e meed catis ' ar ormoala gl

IFwaig snlect zureat maedicat an’. yzawnll bBre ssked @0 caeck thee dose: IF vau wesh e
raangs Fie dase. eater Fie naa Anse tien conhrn bne presoankan

IFwa rhansss "y eemdwanzn’. the spsieom assimes thas pou koo wlucn
redicab an yeo o wizh b opresenbe. Tope tle diesk less [edbees aftbe drog mnamae Yoo
vall <hen see A liss af passible Arugs skating web fiese 2here Lancse 1he eqoire &
re-dicat an, v d vall B0 2 assne F sheck et the medicabinn prd 1awe 5¢ ooed
ie cnrneer Enber bae dase then candirny the preser ancn

IFwm chonse orealary e B prese nned weshe g seqack B far the appenesers
larmulasy Seack lor bee drug requ od thenossleck do Yow wall Zhen be xsked e
rrck shatihe smedicacion v bnes seleskad s carraes Babar brie dase then candirm
b1 prescuphsan.

In all cases te systermr will check B2t the dese s wihie be apareecd (2ge and
vall nisk il b <I'|nr.ge =af b aE S ks rhe rarge af regarmer2n ded Aoses

Atbar woi b e confireees bae peseaphan itwill ae A sposeed 1or checkiinng Ecker
c <k QK" ar "Changs IF wau clics Q0K o pressiaphsn will be rrecrded on the sudit

ol g 14w zlick 'El';mg s tEaner Cha 1T eser '\ingnr' A a0 o O EEs

Examples of task cards for prescribing
medication

T B wathin the ra nge, enabie the Tonfermy’ button,

XP and change

* “Conventional” wisdom in software engineering
is to design for change. It is worth spending time
and effort expecting changes as this reduces costs
later in the life cycle.

* XP, however, maintains that this is not
worthwhile as changes cannot be reliably
predicting.

* Rather, it proposes constant code improvement
(refactoring) to make changes easier when they
have to be implemented.

Refactoring

Programming team look for possible software
improvements and make these improvements

even where there is no immediate need for them.

This improves the understandability of the
software and so reduces the need for
documentation.

Changes are easier to make because the code is
well-structured and clear.

However, some changes requires architecture
refactoring and this is much more expensive.

Examples of refactoring

* Re-organization of a class hierarchy to remove
duplicate code.

* Renaming attributes and methods to make them
easier to understand.

* The replacement of inline code with calls to
methods that have been included in a program
library.

Testing in XP

* Testing is central to XP and XP has developed an
approach where the program is tested after every
change has been made.

* XP testing features:

— Test-first development.
— Incremental test development from scenarios.
— User involvement in test development and validation.

— Automated tests are used to run all component tests
each time that a new release is built.

Test-first development

* Writing tests before code clarifies the
requirements to be implemented.

* Tests are written as programs so that they can be
executed automatically. The test includes a check
that it has executed correctly.

— Usually relies on a testing framework.

* All previous and new tests are run automatically
when new functionality is added, thus checking
that the new functionality has not introduced
errors.

Customer involvement

* The role of the customer in the testing process is to
help develop acceptance tests for the stories that are
to be implemented in the next release of the system.

* The customer who is part of the team writes tests as
development proceeds. All new code is therefore
validated to ensure that it is what the customer
needs.

* However, people adopting the customer role have
limited time available and so cannot work full-time
with the development team. They may feel that
providing the requirements was enough of a
contribution and so may be reluctant to get involved
in the testing process.

Test automation
* Test automation means that tests are written as
executable components before the task is
implemented
— These testing components should be stand-alone,
should simulate the submission of input to be tested
and should check that the result meets the output
specification. An automated test framework is a system
that makes it easy to write executable tests and submit
a set of tests for execution.
* As testing is automated, there is always a set of
tests that can be quickly and easily executed
— Whenever any functionality is added to the system, the
tests can run and problems that the new code has
introduced can be caught immediately.

XP testing difficulties

* Programmers prefer programming to testing and
sometimes they take short cuts when writing
tests. For example, they may write incomplete
tests that do not check for all possible exceptions
that may occur.

* Some tests can be very difficult to write
incrementally.

It difficult to judge the completeness of a set of
tests. Although you may have a lot of system tests,
your test set may not provide complete coverage.

Pair programming
* In XP, programmers work in pairs, sitting together
to develop code.
This helps develop common ownership of code
and spreads knowledge across the team.
* It serves as an informal review process as each line
of code is looked at by more than 1 person.
It encourages refactoring as the whole team can
benefit from this.
¢ Measurements suggest that development
productivity with pair programming is similar to
that of two people working independently.

Chapter 3 Agile s

Pair programming

* In pair programming, programmers sit together at the
same workstation to develop the software.

* Pairs are created dynamically so that all team
members work with each other during the
development process.

* The sharing of knowledge that happens during pair
programming is very important as it reduces the
overall risks to a project when team members leave.

* Pair programming is not necessarily inefficient and
there is evidence that a pair working together is more
efficient than 2 programmers working separately.

Chapter 3 Ay

Advantages of pair programming
* |t supports the idea of collective ownership and
responsibility for the system.

— Individuals are not held responsible for problems with
the code. Instead, the team has collective
responsibility for resolving these problems.

* |t acts as an informal review process because each
line of code is looked at by at least two people.

* It helps support refactoring, which is a process of
software improvement.
— Where pair programming and collective ownership are
used, others benefit immediately from the refactoring
so they are likely to support the process.

