
Extreme programming practices

Pair
programming

Developers work in pairs, checking
each other’s work and providing the
support to always do a good job.

Collective
ownership

The pairs of developers work on all
areas of the system, so that no islands
of expertise develop and all the
developers take responsibility for all of
the code. Anyone can change anything.

Continuous
integration

As soon as the work on a task is
complete, it is integrated into the whole
system. After any such integration, all
the unit tests in the system must pass.

1Chapter 3 Agile software development

Extreme programming practices (b)
Sustainable
pace

Large amounts of overtime are not
considered acceptable as the net effect
is often to reduce code quality and
medium term productivity

On-site
customer

A representative of the end-user of the
system (the customer) should be
available full time for the use of the XP
team. In an extreme programming
process, the customer is a member of
the development team and is
responsible for bringing system
requirements to the team for
implementation.

2Chapter 3 Agile software development

Requirements scenarios

• In XP, a customer or user is part of the XP team and
is responsible for making decisions on requirements.

• User requirements are expressed as scenarios or
user stories.

• These are written on cards and the development
team break them down into implementation tasks.
These tasks are the basis of schedule and cost
estimates.

• The customer chooses the stories for inclusion in the
next release based on their priorities and the
schedule estimates.

3Chapter 3 Agile software development

A ‘prescribing medication’ story

4Chapter 3 Agile software development

Examples of task cards for prescribing

medication

5Chapter 3 Agile software development

XP and change

• “Conventional” wisdom in software engineering
is to design for change. It is worth spending time
and effort expecting changes as this reduces costs
later in the life cycle.

• XP, however, maintains that this is not
worthwhile as changes cannot be reliably
predicting.

• Rather, it proposes constant code improvement
(refactoring) to make changes easier when they
have to be implemented.

6Chapter 3 Agile software development

Refactoring

• Programming team look for possible software

improvements and make these improvements

even where there is no immediate need for them.

• This improves the understandability of the

software and so reduces the need for

documentation.

• Changes are easier to make because the code is

well-structured and clear.

• However, some changes requires architecture

refactoring and this is much more expensive.
Chapter 3 Agile software development 7

Examples of refactoring

• Re-organization of a class hierarchy to remove

duplicate code.

• Renaming attributes and methods to make them

easier to understand.

• The replacement of inline code with calls to

methods that have been included in a program

library.

Chapter 3 Agile software development 8

Testing in XP

• Testing is central to XP and XP has developed an
approach where the program is tested after every
change has been made.

• XP testing features:

– Test-first development.

– Incremental test development from scenarios.

– User involvement in test development and validation.

– Automated tests are used to run all component tests
each time that a new release is built.

9Chapter 3 Agile software development

Test-first development

• Writing tests before code clarifies the
requirements to be implemented.

• Tests are written as programs so that they can be
executed automatically. The test includes a check
that it has executed correctly.
– Usually relies on a testing framework.

• All previous and new tests are run automatically
when new functionality is added, thus checking
that the new functionality has not introduced
errors.

10Chapter 3 Agile software development

Customer involvement
• The role of the customer in the testing process is to

help develop acceptance tests for the stories that are
to be implemented in the next release of the system.

• The customer who is part of the team writes tests as
development proceeds. All new code is therefore
validated to ensure that it is what the customer
needs.

• However, people adopting the customer role have
limited time available and so cannot work full-time
with the development team. They may feel that
providing the requirements was enough of a
contribution and so may be reluctant to get involved
in the testing process.

Chapter 3 Agile software development 11

Test automation
• Test automation means that tests are written as

executable components before the task is
implemented

– These testing components should be stand-alone,
should simulate the submission of input to be tested
and should check that the result meets the output
specification. An automated test framework is a system
that makes it easy to write executable tests and submit
a set of tests for execution.

• As testing is automated, there is always a set of
tests that can be quickly and easily executed

– Whenever any functionality is added to the system, the
tests can run and problems that the new code has
introduced can be caught immediately.

Chapter 3 Agile software development 12

XP testing difficulties

• Programmers prefer programming to testing and

sometimes they take short cuts when writing

tests. For example, they may write incomplete

tests that do not check for all possible exceptions

that may occur.

• Some tests can be very difficult to write

incrementally.

• It difficult to judge the completeness of a set of

tests. Although you may have a lot of system tests,

your test set may not provide complete coverage.

Chapter 3 Agile software development 13

Pair programming

• In XP, programmers work in pairs, sitting together
to develop code.

• This helps develop common ownership of code
and spreads knowledge across the team.

• It serves as an informal review process as each line
of code is looked at by more than 1 person.

• It encourages refactoring as the whole team can
benefit from this.

• Measurements suggest that development
productivity with pair programming is similar to
that of two people working independently.

14Chapter 3 Agile software development

Pair programming

• In pair programming, programmers sit together at the

same workstation to develop the software.

• Pairs are created dynamically so that all team

members work with each other during the

development process.

• The sharing of knowledge that happens during pair

programming is very important as it reduces the

overall risks to a project when team members leave.

• Pair programming is not necessarily inefficient and

there is evidence that a pair working together is more

efficient than 2 programmers working separately.
15Chapter 3 Agile software development

Advantages of pair programming
• It supports the idea of collective ownership and

responsibility for the system.

– Individuals are not held responsible for problems with
the code. Instead, the team has collective
responsibility for resolving these problems.

• It acts as an informal review process because each
line of code is looked at by at least two people.

• It helps support refactoring, which is a process of
software improvement.

– Where pair programming and collective ownership are
used, others benefit immediately from the refactoring
so they are likely to support the process.

Chapter 3 Agile software development 16

