
Chapter 3 

Agile Software Development

1Chapter 3 Agile software development

Topics covered

Agile methods

Plan-driven and agile development

Extreme programming

Agile project management

Scaling agile methods

Rapid software development

• Rapid development and delivery is now often the 
most important requirement for software systems
– Businesses operate in a fast –changing requirement and it is 

practically impossible to produce a set of stable software 
requirements

– Software has to evolve quickly to reflect changing business 
needs.

• Rapid software development
– Specification, design and implementation are inter-leaved

– System is developed as a series of versions with stakeholders 
involved in version evaluation

– User interfaces are often developed using an IDE and graphical 
toolset.

2Chapter 3 Agile software development



Agile methods

• Dissatisfaction with the overheads involved in software 

design methods of the 1980s and 1990s led to the 

creation of agile methods. These methods:

– Focus on the code rather than the design

– Are based on an iterative approach to software 

development

– Are intended to deliver working software quickly and 

evolve this quickly to meet changing requirements.

• The aim of agile methods is to reduce overheads in the 

software process (e.g. by limiting documentation) and to 

be able to respond quickly to changing requirements

without excessive rework.
3Chapter 3 Agile software development

Agile manifesto 

• Philosophy: We are uncovering better ways of 

developing software by doing it and helping 

others do it.     Through this work we have come to 

value:

– Individuals and interactions over processes and tools

– Working software over comprehensive 

documentation 

– Customer collaboration over contract negotiation

– Responding to change following a plan 

Chapter 3 Agile software development 4



The principles of agile methods

Principle Description

Customer

involvement

Customers should be closely involved

throughout the development process. Their

role is provide and prioritize new system

requirements and to evaluate the iterations

of the system.

Incremental

delivery

The software is developed in increments

with the customer specifying the

requirements to be included in each

increment.

5Chapter 3 Agile software development

The principles of agile methods

Principle Description

People not

process

The skills of the development team should be

recognized and exploited. Team members should

be left to develop their own ways of working

without prescriptive processes.

Embrace change Expect the system requirements to change and so

design the system to accommodate these

changes.

Maintain

simplicity

Focus on simplicity in both the software being

developed and in the development process.

Wherever possible, actively work to eliminate

complexity from the system.

6Chapter 3 Agile software development



Agile method applicability
• Product development where a software company is 

developing a small or medium-sized product for sale. 

• Custom system development within an organization, 

where there is a clear commitment from the customer 

to become involved in the development process and 

where there are not a lot of external rules and 

regulations that affect the software.

• Because of their focus on small, tightly-integrated 

teams, there are problems in scaling agile methods to 

large systems. 

Chapter 3 Agile software development 7

Problems with agile methods
• It can be difficult to keep the interest of customers 

who are involved in the process.

• Team members may be unsuited to the intense 
involvement that characterizes agile methods.

• Prioritizing changes can be difficult where there are 
multiple stakeholders.

• Maintaining simplicity requires extra work.

• Contracts may be a problem as with other approaches 
to iterative development. Customer pays for system 
development rather than the specification 
development

8Chapter 3 Agile software development



Agile methods and software maintenance

• Most organizations spend more on maintaining existing 

software than they do on new software development. So, 

if agile methods are to be successful, they have to support 

maintenance as well as original development.

• Two key issues:

– Are systems that are developed using an agile approach 

maintainable, given the emphasis in the development 

process of minimizing formal documentation?

– Can agile methods be used effectively for evolving a 

system in response to customer change requests?

• Problems may arise if original development team cannot 

be maintained.
Chapter 3 Agile software development 9

Plan-driven and agile development
• Plan-driven development

– A plan-driven approach to software engineering is 
based around separate development stages with the 
outputs to be produced at each of these stages planned 
in advance.

– Not necessarily waterfall model – plan-driven, 
incremental development is possible

– Iteration occurs within activities. 

• Agile development

– Specification, design, implementation and testing are 
inter-leaved and the outputs from the development 
process are decided through a process of negotiation 
during the software development process.

10Chapter 3 Agile software development



Plan-driven and agile specification

11Chapter 3 Agile software development

Technical, human, organizational issues

• Most projects include elements of plan-driven and agile 

processes. Deciding on the balance depends on:

– Is it important to have a very detailed specification and 

design before moving to implementation? If so, you 

probably need to use a plan-driven approach.

– How large is the system that is being developed? Agile 

methods are most effective when the system can be 

developed with a small co-located team who can 

communicate informally. This may not be possible for 

large systems that require larger development teams so a 

plan-driven approach may have to be used. 

12Chapter 3 Agile software development



Technical, human, organizational issues

– Is an incremental delivery strategy, where you deliver the 

software to customers and get rapid feedback from them, 

realistic? If so, consider using agile methods.

– What type of system is being developed? 

• Plan-driven approaches may be required for systems that 

require a lot of analysis before implementation (e.g. real-

time system with complex timing requirements).

– What is the expected system lifetime? 

• Long-lifetime systems may require more design 

documentation to communicate the original intentions of 

the system developers to the support team. 

13Chapter 3 Agile software development

Technical, human, organizational issues

– What technologies are available to support system 

development? 

• Agile methods rely on good tools to keep track of an 

evolving design

– How is the development team organized? 

• If the development team is distributed or if part of the 

development is being outsourced, then you may need to 

develop design documents to communicate across the 

development teams. 

14Chapter 3 Agile software development



Technical, human, organizational issues

– Are there cultural or organizational issues that may affect 

the system development? 

• Traditional engineering organizations have a culture of plan-based 

development, as this is the norm in engineering.

– How good are the designers and programmers in the 

development team?

• It is sometimes argued that agile methods require higher skill 

levels than plan-based approaches in which programmers simply 

translate a detailed design into code

– Is the system subject to external regulation? 

• If a system has to be approved by an external regulator (e.g. the 

FAA approve software that is critical to the operation of an aircraft) 

then you will probably be required to produce detailed 

documentation as part of the system safety case.Chapter 3 Agile software development 15

Extreme programming

• Perhaps the best-known and most widely used 
agile method.

• Extreme Programming (XP) takes an ‘extreme’ 
approach to iterative development. 

– New versions may be built several times per day;

– Increments are delivered to customers every 2 weeks;

– All tests must run for every build and the build is only 
accepted if tests run successfully.

16Chapter 3 Agile software development



XP and agile principles

• Incremental development is supported through small, 

frequent system releases.

• Customer involvement means full-time customer 

engagement with the team.

• People, not process, are supported through pair 

programming, collective ownership and a process that 

avoids long working hours.

• Change supported through regular system releases.

• Maintaining simplicity through constant refactoring of 

code.

17Chapter 3 Agile software development

The extreme programming release cycle

18Chapter 3 Agile software development



Extreme programming practices

Principle or

practice

Description

Incremental

planning

Requirements are recorded on story

cards and the stories to be included in a

release are determined by the time

available and their relative priority. The

developers break these stories into

development ‘Tasks’. See Figures 3.5

and 3.6.

Small releases The minimal useful set of functionality

that provides business value is

developed first. Releases of the system

are frequent and incrementally add

functionality to the first release.
19Chapter 3 Agile software development

Extreme programming practices
Principle or

practice

Description

Simple design Enough design is carried out to meet the

current requirements and no more.

Test-first

development

An automated unit test framework is

used to write tests for a new piece of

functionality before that functionality

itself is implemented.

Refactoring All developers are expected to refactor

the code continuously as soon as

possible code improvements are found.

This keeps the code simple and

maintainable.
20Chapter 3 Agile software development



Extreme programming practices 

Pair
programming

Developers work in pairs, checking
each other’s work and providing the
support to always do a good job.

Collective
ownership

The pairs of developers work on all
areas of the system, so that no islands
of expertise develop and all the
developers take responsibility for all of
the code. Anyone can change anything.

Continuous
integration

As soon as the work on a task is
complete, it is integrated into the whole
system. After any such integration, all
the unit tests in the system must pass.

21Chapter 3 Agile software development

Extreme programming practices (b)
Sustainable
pace

Large amounts of overtime are not
considered acceptable as the net effect
is often to reduce code quality and
medium term productivity

On-site
customer

A representative of the end-user of the
system (the customer) should be
available full time for the use of the XP
team. In an extreme programming
process, the customer is a member of
the development team and is
responsible for bringing system
requirements to the team for
implementation.

22Chapter 3 Agile software development


