
Grading

60% Final

10% Midterm

5% class participation

25% Lab Evaluation

Coping with change

• Change is inevitable in all large software projects.

– Business changes lead to new and changed system
requirements

– New technologies open up new possibilities for improving
implementations

– Changing platforms require application changes

• Change leads to rework so the costs of change
include both rework (e.g. re-analysing requirements)
as well as the costs of implementing new
functionality

2Chapter 2 Software Processes

Reducing the costs of rework

• Change avoidance, where the software process includes activities

that can anticipate possible changes before significant rework is

required.

– For example, a prototype system may be developed to show

some key features of the system to customers.

• Change tolerance, where the process is designed so that changes

can be accommodated at relatively low cost.

– This normally involves some form of incremental development.

Proposed changes may be implemented in increments that

have not yet been developed. If this is impossible, then only a

single increment (a small part of the system) may have been

altered to incorporate the change.

3Chapter 2 Software Processes

Ways to Cope with change

• Software Prototyping

where a version of the system or part of the system is

developed quickly to check the customer’s requirements and

the feasibility of some design decisions.

• Incremental delivery

where system increments are delivered to the customer for

comment and experimentation.

4Chapter 2 Software Processes

Software prototyping

• A prototype is an initial version of a system used
to demonstrate concepts and try out design
options.

• A prototype can be used in:

– The requirements engineering process to help with
requirements elicitation and validation;

– In design processes to explore options and develop a
UI design;

– In the testing process to run back-to-back tests.

5Chapter 2 Software Processes

Benefits of prototyping

• Improved system usability.

• A closer match to users’ real needs.

• Improved design quality.

• Improved maintainability.

• Reduced development effort.

6Chapter 2 Software Processes

The process of prototype development

7Chapter 2 Software Processes

Prototype development

• May be based on rapid prototyping languages or

tools

• May involve leaving out functionality

– Prototype should focus on areas of the product that

are not well-understood;

– Error checking and recovery may not be included in

the prototype;

– Focus on functional rather than non-functional

requirements such as reliability and security

Chapter 2 Software Processes 8

Throw-away prototypes

• Developers are sometimes pressured by
managers to deliver throwaway prototypes.
However, this is usually unwise because:

1. It may be impossible to tune the system to meet
non-functional requirements;

2. Prototypes are normally undocumented;

3. The prototype structure is usually degraded through
rapid change;

4. The prototype probably will not meet normal
organisational quality standards.

9Chapter 2 Software Processes

Incremental delivery

• Incremental delivery is an approach to software
development where some of the developed increments are
delivered to the customer and deployed for use in an
operational environment

• Rather than deliver the system as a single delivery, the
development and delivery is broken down into increments
with each increment delivering part of the required
functionality.

• User requirements are prioritised and the highest priority
requirements are included in early increments.

• Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.

10Chapter 2 Software Processes

Incremental development and delivery

• Incremental development

– Develop the system in increments and evaluate each
increment before proceeding to the development of the next
increment;

– Normal approach used in agile methods;

– Evaluation done by user/customer.

• Incremental delivery

– Deploy an increment for use by end-users;

– More realistic evaluation about practical use of software;

– Difficult to implement for replacement systems as increments
have less functionality than the system being replaced.

Chapter 2 Software Processes 11

Incremental delivery

12Chapter 2 Software Processes

Incremental delivery advantages

1. Customer value can be delivered with each

increment so system functionality is available

earlier.

2. Early increments act as a prototype to help elicit

requirements for later increments.

3. Lower risk of overall project failure.

4. The highest priority system services tend to

receive the most testing.

13Chapter 2 Software Processes

Incremental delivery problems

• Most systems require a set of basic facilities that are used by
different parts of the system.

– As requirements are not defined in detail until an increment is
to be implemented, it can be hard to identify common facilities
that are needed by all increments.

• The essence of iterative processes is that the specification is
developed in conjunction with the software.

• Iterative development can also be difficult when a
replacement system is being developed. Users want all of the
functionality of the old system and are often unwilling to
experiment with an incomplete new system Therefore,
getting useful customer feedback is difficult.

14Chapter 2 Software Processes

Boehm’s spiral model

• Process is represented as a spiral rather than as a
sequence of activities with backtracking.

• Each loop in the spiral represents a phase in the
process.

• No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
is required.

• Risks are explicitly assessed and resolved
throughout the process.

15Chapter 2 Software Processes

Boehm’s spiral model of the software

process

16Chapter 2 Software Processes

Spiral model sectors

• Objective setting

– Specific objectives for the phase are identified.

– Constraints on the process and the product are identified

– a detailed management plan is drawn up. Project risks are

identified.

• Risk assessment and reduction

– Risks are assessed and activities put in place to reduce the key

risks.

– For each of the identified project risks, a detailed analysis is

carried out.

– Steps are taken to reduce the risk
17Chapter 2 Software Processes

Spiral model sectors

• Development and validation
– A development model for the system is chosen which can

be any of the generic models.

– For example, throwaway prototyping may be the best
development approach if user interface risks are
dominant.

• Planning

The The project is reviewed and a decision made
whether to continue with a further loop of the spiral.
If it is decided to continue, plans are drawn up for
the next phase of the project.

18Chapter 2 Software Processes

Spiral model usage

• Spiral model has been very influential in helping

people think about iteration in software

processes and introducing the risk-driven

approach to development.

• In practice, however, the model is rarely used as

published for practical software development.

Chapter 2 Software Processes 19

