
ACM/IEEE Code of Ethics
Institute of Electrical and Electronics Engineers (IEEE)

Association for Computing Machinery (ACM)

• The professional societies in the US have
cooperated to produce a code of ethical practice.

• Members of these organisations sign up to the
code of practice when they join.

• The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

Code of ethics - preamble
• Preamble

– The short version of the code summarizes aspirations at a high
level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations
change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details
form a consistent code.

– Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:

Code of ethics - principles

1- PUBLIC

– Software engineers shall act consistently with the public interest.

2- CLIENT AND EMPLOYER

– Software engineers shall act in a manner that is in the best interests of their

client and employer consistent with the public interest.

3- PRODUCT

– Software engineers shall ensure that their products and related modifications

meet the highest professional standards possible.

Code of ethics - principles

4- JUDGMENT

– Software engineers shall maintain integrity and independence in their

professional judgment.

5- MANAGEMENT

– Software engineering managers and leaders shall subscribe to and promote

an ethical approach to the management of software development and

maintenance.

6- PROFESSION

– Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

Code of ethics - principles

7- COLLEAGUES

– Software engineers shall be fair to and supportive of
their colleagues.

8- SELF

– Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall
promote an ethical approach to the practice of the
profession.

The rationality of these principles is discussed in the
book.

Dilemma Ex.

• A particularly difficult situation for professional
engineers arises when their employer acts in an
unethical way. Say a company is responsible for
developing a safety-critical system and, because of
time pressure, falsifies the safety validation records. Is
the engineer’s responsibility to maintain
confidentiality or to alert the customer or publicize, in
some way, that the delivered system may be unsafe?

• The appropriate ethical position here depends
entirely on the views of the individuals who are
involved…

Dilemma Ex.

• Another ethical issue is participation in the development of
military and nuclear systems. Some people feel strongly
about these issues and do not wish to participate in any
systems development associated with military systems.

• Others will work on military systems but not on weapons
systems.

• In this situation, it is important that both employers and
employees should make their views known to each other in
advance.

• Where an organization is involved in military or nuclear work,
they should be able to specify that employees must be willing
to accept any work assignment.“Safety comes first”

Software Process Models

Objectives

• To introduce software process models

• To describe three generic process models and
when they may be used

• To describe outline process models for
requirements engineering, software development,
testing and evolution

The software process

• A structured set of activities required to develop a

software system

– Specification;

– Design;

– Validation;

– Evolution.

• A software process model is an abstract representation of a

process. It presents a description of a process from some particular

perspective.

Generic software process models

• The waterfall model

– Separate and distinct phases of specification and development.

• Evolutionary development

– Specification, development and validation are interleaved.

• Component-based (Reuse Oriented) software engineering

– The system is assembled from existing components.

• There are many variants of these models e.g. formal development
where a waterfall-like process is used but the specification is a
formal specification that is refined through several stages to an
implementable design.

Waterfall model

Waterfall model phases

1. Requirements analysis and definition

• The system’s services, constraints, and goals are established

by consultation with system users.

• They are then defined in detail and serve as a system

specification.

2. System and software design

• The systems design process allocates the requirements to

either hardware or software systems

• establishing an overall system architecture

Waterfall model phases

3. Implementation and unit testing

• the software design is realized as a set of programs or

program units.

• Unit testing involves verifying that each unit meets its

specification.

4. Integration and system testing

• The individual program units or programs are integrated

and tested as a complete system to ensure that the

software requirements have been met.

• Then software system is delivered to the customer.

Waterfall model phases

4. Operation and maintenance

• Maintenance involves correcting errors which were not

discovered in earlier stages of the life cycle

• Improving the implementation of system units and enhancing

the system’s services as new requirements are discovered.

• this is the longest life cycle phase. The system is installed and

put into practical use.

• The main drawback of the waterfall model is the difficulty of
accommodating change after the process is underway. One
phase has to be complete before moving onto the next
phase.

Waterfall model problems

• Inflexible partitioning of the project into distinct stages makes

it difficult to respond to changing customer requirements.

• Therefore, this model is only appropriate when the

requirements are well-understood and changes will be fairly

limited during the design process.

• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems

engineering projects where a system is developed at several

sites.

Evolutionary (Incremental) development

• Exploratory development

– Objective is to work with customers and to evolve a

final system from an initial outline specification. Should

start with well-understood requirements and add new

features as proposed by the customer.

• Throw-away prototyping

– Objective is to understand the system requirements.

Should start with poorly understood requirements to

clarify what is really needed.

Evolutionary development

Evolutionary (Incremental) development

• Incremental development reflects the way that we solve

problems.

• We rarely work out a complete problem solution in advance

but move toward a solution in a series of steps, backtracking

when we realize that we have made a mistake.

• By developing the software incrementally, it is cheaper and

easier to make changes in the software as it is being

developed.

• Each increment or version of the system incorporates some of

the functionality that is needed by the customer.

Benefits of Evolutionary Development

• The cost of accommodating changing customer
requirements is reduced.

– The amount of analysis and documentation that has to be
redone is much less than is required with the waterfall model.

• It is easier to get customer feedback

– Customers can comment on demonstrations of the software and
see how much has been implemented.

• More rapid delivery and deployment of useful software to
the customer is possible

– Customers are able to use and gain value from the software
earlier than is possible with a waterfall process.

Evolutionary development: Applicable

– For small or medium-size interactive systems;

– For parts of large systems (e.g. the user interface);

– For short-lifetime systems.

Evolutionary development: Problems

• Lack of process visibility: Managers need regular deliverables

to measure progress. If systems are developed quickly, it is not

cost-effective to produce documents that reflect every version

of the system.

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be

required.

• The problems of incremental development become acute

for large, complex, long-lifetime systems, where different

teams develop different parts of the system.

Component-based (Reuse-oriented)

software engineering

• Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.

• This approach is becoming increasingly used as
component standards have emerged.

Reuse-oriented development

Reuse-oriented Stages

• Component analysis; Given the requirements specification,
a search is made for components to implement that
specification

• Requirements modification; the requirements are analyzed
using information about the components that have been
discovered. They are then modified to reflect the available
components.

• System design with reuse; the framework of the system is
designed

• Development and integration; and the components and
COTS systems are integrated to create the new system

Process iteration

• System requirements ALWAYS evolve in the course
of a project so process iteration where earlier
stages are reworked is always part of the process
for large systems.

• Iteration can be applied to any of the generic
process models.

• Two (related) approaches

– Incremental delivery;

– Spiral development.

Incremental delivery

• Rather than deliver the system as a single delivery, the

development and delivery is broken down into increments

with each increment delivering part of the required

functionality.

• User requirements are prioritised and the highest priority

requirements are included in early increments.

• Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

Incremental development

Incremental development advantages

• Customer value can be delivered with each

increment so system functionality is available

earlier.

• Early increments act as a prototype to help elicit

requirements for later increments.

• Lower risk of overall project failure.

• The highest priority system services tend to

receive the most testing.

