
2/24/2016

1

Chapter 2 Elementary Programming

1

Motivations

In the preceding chapter, you learned how to

create, compile, and run a Java program. Starting

from this chapter, you will learn how to solve

practical problems programmatically. Through

these problems, you will learn Java primitive data

types and related subjects, such as variables,

constants, data types, operators, expressions, and

input and output.

2

Introducing Programming with an

Example

Listing 2.1 Computing the Area of a

Circle

This program computes the area of

the circle.

3

ComputeArea Run

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

4

no valueradius

allocate memory

for radius

animation

2/24/2016

2

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

5

no valueradius

memory

no valuearea

allocate memory

for area

animation

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

6

20radius

no valuearea

assign 20 to radius

animation

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

7

20radius

memory

1256.636area

compute area and assign

it to variable area

animation

Trace a Program Execution
public class ComputeArea {

/** Main method */

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

8

20radius

memory

1256.636area

print a message to the

console

animation

2/24/2016

3

Reading Input from the Console

9

1. Create a Scanner object

Scanner input = new Scanner(System.in);

, nextShort(), nextByte(), next(). Use the methods 2

, or nextDouble(), nextFloat(), nextLong(), nextInt()

, long, int, short, byteto obtain to a string, nextBoolean()

value. For example,boolean, or double, float

System.out.print("Enter a double value: ");

Scanner input = new Scanner(System.in);

double d = input.nextDouble();

ComputeAreaWithConsoleInput

Run

ComputeAverage

Run

Identifiers

•An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).

•An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.

–An identifier cannot be a reserved word. (See Appendix A,

“Java Keywords,” for a list of reserved words).

•An identifier cannot be true, false, or

null.

•An identifier can be of any length.

10

Variables

// Compute the first area

radius = 1.0;

area = radius * radius * 3.14159;

System.out.println("The area is “ +

area + " for radius "+radius);

// Compute the second area

radius = 2.0;

area = radius * radius * 3.14159;

System.out.println("The area is “ +

area + " for radius "+radius);

11

Declaring Variables

int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to

// be a double variable;

char a; // Declare a to be a

// character variable;

12

2/24/2016

4

Assignment Statements

x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

13

Declaring and Initializing

in One Step

•int x = 1;

•double d = 1.4;

14

Constants

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;

final int SIZE = 3;

15

Numerical Data Types

16

Name Range Storage Size

byte –27 (-128) to 27–1 (127) 8-bit signed

short –215 (-32768) to 215–1 (32767) 16-bit signed

int –231 (-2147483648) to 231–1 (2147483647) 32-bit signed

long –2

63
 to 2

63
–1 64-bit signed

 (i.e., -9223372036854775808

 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to

 -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

2/24/2016

5

Numeric Operators

17

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

18

Remainder Operator

Remainder is very useful in programming. For example, an even
number % 2 is always 0 and an odd number % 2 is always 1. So

you can use this property to determine whether a number is
even or odd. Suppose today is Saturday and you and your

friends are going to meet in 10 days. What day is in 10
days? You can find that day is Tuesday using the following

expression:

19

 Saturday is the 6th day in a week

A week has 7 days

After 10 days

The 2nd day in a week is Tuesday
(6 + 10) % 7 is 2

Problem: Displaying Time

Write a program that obtains hours and

minutes from seconds.

20

DisplayTime Run

2/24/2016

6

NOTE

Calculations involving floating-point numbers are

approximated because these numbers are not stored

with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are

stored precisely. Therefore, calculations with integers

yield a precise integer result.

21

Number Literals

A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and

5.0 are literals in the following statements:

int i = 34;

long x = 1000000;

double d = 5.0;

22

Integer Literals
An integer literal can be assigned to an integer variable as

long as it can fit into the variable. A compilation error

would occur if the literal were too large for the variable to

would1000=bbytestatementtheexample,For.hold

cause a compilation error, because 1000 cannot be stored

.typebytetheofvariableain

whosetype,inttheofbetoassumedisliteralintegerAn

value is between -231 (-2147483648) to 231–1

longtheofliteralintegerandenoteTo.)2147483647(

preferredisL.lorLletterthewithitappendtype,

because l (lowercase L) can easily be confused with 1 (the

digit one).
23

Floating-Point Literals

Floating-point literals are written with a decimal

point. By default, a floating-point literal is treated

is0.5example,For.valuetypedoubleaas

You.valuefloatanotvalue,doubleaconsidered

lettertheappendingbyfloatanumberamakecan

appendingbydoubleanumberamakeand,Forf

f2.100usecanyouexample,For.Dordletterthe

D2.100ord2.100andnumber,floataforF2.100or

.numberdoubleafor

24

2/24/2016

7

How to Evaluate an Expression

25

Though Java has its own way to evaluate an

expression behind the scene, the result of a Java

expression and its corresponding arithmetic

expression are the same. Therefore, you can safely

apply the arithmetic rule for evaluating a Java

expression.
3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Problem: Converting Temperatures

Write a program that converts a Fahrenheit degree

to Celsius using the formula:

26

FahrenheitToCelsius Run

)32)((
9
5

−= fahrenheitcelsius

Shortcut Assignment Operators

27

OperatorExampleEquivalent

+=i += 8i = i + 8

-=f -= 8.0f = f - 8.0

*=i *= 8i = i * 8

/=i /= 8i = i / 8

%=i %= 8i = i % 8

Increment and

Decrement Operators

28

OperatorNameDescription

++varpreincrementand evaluates 1 by varThe expression (++var) increments

the increment.aftervarvalue in newto the

var++postincrementvalue originalThe expression (var++) evaluates to the

. 1by varand increments varin

var--predecrementand evaluates 1 by varvar) decrements --The expression (

the decrement. aftervarvalue in newto the

--varpostdecrement value original) evaluates to the --The expression (var

. 1by varand decrements varin

2/24/2016

8

Increment and

Decrement Operators, cont.

29

int i = 10;

int newNum = 10 * i++; int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i); i = i + 1;

int newNum = 10 * i;

Same effect as

Increment and

Decrement Operators, cont.

30

Using increment and decrement operators makes

expressions short, but it also makes them complex and

difficult to read. Avoid using these operators in expressions

that modify multiple variables, or the same variable for

. int k = ++i + imultiple times such as this:

