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Classical Relation

Definition 3.1. (Classical relation). A subset R C X XY where X and Y
are classical sets, is a classical relation.

A classical relation can be characterized by a function R : X xY — {0,1},

1 if (z,y)€eR
R(z,y) = { 0 otherwise -
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Fuzzy Relation

Definition 3.2. (Fuzzy Relation, Sanchez [129], Di Nola-Sessa-Pedrycz-
Sanchez [}8], De Baets [/2]) Let X,Y be two classical sets. A mapping
R: X xY — [0,1] is called a fuzzy relation. The number R(z,y) € [0,1]
can be interpreted as the degree of relationship between x and v.

Remark 3.3. A fuzzy relation can be seen as a fuzzy subset of the set X xXY.

We denote by F(X xY) the family of all fuzzy relations between elements of
X andY.
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Example

Example 3.4. R ="much greater than”

—m— Y T >y
Rcy)i= { pE=—

0 otherunse
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Representation

A fuzzy relation between elements in two finite sets X = {x1, xs,...,Z;n} and
Y ={y1,¥y2,...,yn} can be represented as a matrix

R(xlayl) R(xlayQ) R(xlayn)
= R(x23y1) R($2ay2) R(anyn)
R(-Tma yl) R(:I:ma y2) R(ﬂ?m, yn)
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Ditterent
Representations

X X

IO\ = —O |

P
& W N =
vlo
ololN]oln
O™
ui=lolo|d
7\«»
ﬁ,
w

s
Membership matrix Sagittal diagram
T S
x y R(x, ¥)
1 1 =7
1 3 .3
2 2 7
-9 2 3 1
3 1 .9
3 4 1
4 3 o -8
S a4 a4 .5

uzzy ns
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Example

Let R be a fuzzy relation between the two sets X = {(New York City, Paris} and ¥ = {Beijing,
New York City, London}, which represents the relational concept “very far” This relation can
be written in list notation as

R(X,Y) = 1/NYC, Beijing + O/NYC, NYC + .6/NYC, London +
.9/Paris, Beijing + .7/Paris, NYC + .3/Paris, London.

This relation can also be represented by the following two-dimensional membership array (matrix):
| NYC Paris
Beijing 1 9
NYC 0 7
London .6 )

Fuzzy Relations



Fuzzy Set Operations
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T-Norm, T-Conorm, and
The Invers%gTranspose)

Fuzzy Relations 9



Max-Min Composition

Definition 3.5. Let R € F(X xY) and S € F(Y x Z) be fuzzy relations.
Then Ro S € F(X x Z), defined as

RoS(z,2) = \/ R(z,y) AS(y,z),

yeyY

s called the max-min composition of the fuzzy relations R and S.

If R € F(X x X) then we can define R? = RoR, and generally R™ = RoR" !,
n = 2.
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Max-Min Composition:
Discrete Case

et Xe =ty S an oV e =yt randi Ze = zE 2o be finite setse 1T
= () e S B R (XSO A TI RS E=1 (-1 - (R O B R (1
Z) are discrete fuzzy relations then the composition T — =
(tik)i=1,....nk=1,..p = R0 S € F(X x Z) is given by

m
tik = \/ Tij N\ Sjk,
j=1
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Example

0.8 0.3
Example 3.7. If R = 2o T = and S = 0.1 0 then
1 0 09 05 0.6

ROS=<O'3 0.3).

0.8 0.6
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Example

SSR-5 IS S LT 83 S5 lS
0 7 1 || 3 2 0 9 |=]1 2 5 .7].
4 .6 .5 1 0 5 5 S 4 5 6

For example,
8(=ry1) = max[min(.3, .9), min(.5, .3), min(.8, 1)]

= max[min(p11, g11), min(pi2, g21), min(p13, g31)],
4(=r3;) = max[min(.4, .5), min(.6, .2), min(.5, 0)]

= max[min(ps1, 12), min(ps2, g22), min(ps3, g32)].
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Properties
3
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Properties

Proposition 3.9. For any R,S € F(X xY) and Q € F(Y x Z) we have
(i) (RVS)oQ=(RoQ)V(50Q)
(i) (RAS)o Q< (RoQ)A(S0Q).

Remark 3.10. Equality in (ii) does not hold. Indeed, if we conside

=
1 0 0 1 1 1 0
(11>,S=(11>,Q=(11>then(R/\S = 1)

while (Ro Q) A (SoQ) = < i }
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Min-Max Composition

Definition 3.11. (e.g. Nobuhara-Bede-Hirota [118]) Let R € F(X xY') and
SeF(Y xZ). Then ReS € F(X x Z), defined as

ReS(z,z) = /\ R(z,y)V S(y, 2)

yey

s called the min-max composition of the fuzzy relations R and S.

Fuzzy Relations 16



Example

0.8 0.3
Example 3.12. If R = R and S = | 0.1 0 then
1 0 09 0.5 0.6

R.S=(0‘5 0.3).

0.1 0
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Properties

Proposition 3.13. (i) The min-max composition is associative, i.e., for any
Re F(XxY),SeF(Y xZ)andT € F(Z x U) we have

(ReS)eT =Re(SeT).
(ii) Consider Ry, Ry € F(X xXY), Q € F(Y x Z). If Ry < Ry then
Rie(Q < Rye().

Fuzzy Relations
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Properties

Proposition 3.14. For any R,S € F(X xY) and T € F(Y x Z) we have
(i) (RANS)eT = (ReT)AN(SeT).
(ii) (RVS)eT > (ReT)V (SeT).

Remark 3.15. Fquality in (ii) does not hold. Indeed, R = ( i (1) ), 5 =

( ),T ( ) then (RV S)e T = ( - ) while (ReT)V (S'e

)

=)
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Properties
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(Generalization

Remark 3.17. The min-max composition can be naturally generalized to
min-t-conorm compositions

I Oe Bl an 2 = /\ RS E (T2
yey

where S is an arbitrary t-conorm.
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Min — Composition

Let — be the standard Godel implication defined as

I =
a:—>y:sup{z€[0,1]|a:/\z§y}:{1 if z<uy

Fuzzy Relations
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Min — Composition

Proposition 3.18. For any z,y, z € [0, 1] we have
(i) (xVy) = z=(x —2)\(y— 2).
(i) (xNy) > z=(x— 2)V(y — 2).
(i) t = (yVz)=(x—y)V(zx—2).
() z— (YN z)=(x =y A(x— 2).
(v) zA(x—y) <y.
(vi) z = (z ANy) 2 y.
(vii) (x = y) >y > x.

Fuzzy Relations
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Min — Composition

Definition 3.19. The min— composition can be defined as:

RaS(z,2)= /\ R(z,y) > S(y,2).

yeY

Often in the literature (see e.g. De Baets |42

a dual operation is considered as

RpS(z, z) /\Sy,

) it is called subcomposition and

called the supercomposition. The relation between the two is given by the

next proposition.

Fuzzy Relations
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Relation between subcomposition
and supercomposition

Proposition 3.20. For R; € F(X xY) and Ry € F(Y X Z) we have
(i) Ri<Ry = (Ry > Ry )™
(ii) Ri> Ry = (R ' < Ry Y)~L.

Fuzzy Relations 5



Properties

Proposition 3.21. If R, S € F(X xY) and Q € F(Y x Z) are such that
R < S then R14Q > S<0Q).

Proposition 3.22. For any R,S € F(X xY) and Q € F(Y x Z) we have
(1) (RVS)1Q = (RaQ) A (S<Q).
(1) (RAS)1Q = (R<1Q) V (S<Q).

Fuzzy Relations 26



Fuzzy Relational Equations with
Max-Min and Min — Compositions

We consider the following two fuzzy relational equations
RoP=qQ

and

R<aP=Q
with Re F(X xY),Pe F(Y x Z) and Q € F(X x Z).

Fuzzy Relations
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Fuzzy Relational Equations with
Max-Min and Min — Compositions

Theorem 3.23. The following inequalities hold true:
(i) P< R '<(RoP);
(i) Ro (R <Q) < Q;
(iii) R< (P<a(Ro P)~ 1)L,
(iv) (P<Q™ ') o P<LQ.

Fuzzy Relations
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Fuzzy Relational Equations with
Max-Min and Min — Compositions

Theorem 3.24. (Sanchez [129]) (i) Consider the equation R o P = @Q with
unknown P. The equation has solutions if and only if R~ < Q is a solution
and in this case it is the greatest solution of this equation.

(i) Consider the equation R o P = Q with unknown R. The equation has

solutions if and only if (P < Q™ 1)~1 is a solution and in this case it is the
greatest solution of this equation.

Fuzzy Relations 29



Example

Example 3.25. Let us consider the fuzzy relational equation

0.3 0.2 0.4 0.3 04 04
01 03 05 JoP=| 03 05 05 |.

0.5 04 0.6 0.3 0.5 0.6

(ES I
R '«aQ=103 1 1 |,
03 0.5 1

Fuzzy Relations
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Example (Cont.)

and since

0.3 0.2 04 0.3 1 1 0.3 04 04
01 03 05 Jo|1 03 1 1 |=1{ 03 05 0.5 ],
0.5 04 0.6 0.3 0.5 1 0.3 0.5 0.6

then R~ <1 Q is a solution of the equation. From the previous theorem it
follows that it is the greatest solution of the given equation.

Fuzzy Relations Bill



Fuzzy Relational Equations with
Max-Min and Min — Compositions

Theorem 3.26. The following inequalities hold true:
(i) QP! AP > Q;
(ii) (R<P)aP~1>R;
(iii) R~ o (R4 P) < P;
(iv) Ra(R~1oQ) > Q.

Fuzzy Relations
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Fuzzy Relational Equations with
Max-Min and Min — Compositions

Theorem 3.27. (Miyakoshi-Shimbo [112]) (i) Consider the equation RAP =
Q with unknown R. The equation has solutions if and only if Q< P~ ! is a
solution and in this case it is the greatest solution of this equation.

(ii) Consider the equation R< P = Q with unknown P. The equation has

solutions if and only if R™1 o Q is a solution and in this case it is the least
solution of this equation.

Fuzzy Relations 23



Example

Example 3.28. Let us consider the fuzzy relational equation

0.3 0.2 04 0.3 04 04
Ol 03 s || @2 = 1 0.6 0.5
0.5 04 0.6 0.5 0.5 0.6
Then
U 0 (05
R~ 1'o A= 04 04 04 |.
DI5N0E5 016

Fuzzy Relations
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Example (Cont.)

Since
0.3 02 04 05050025 1 1R
01 03 05 |« 04 04 04 | = 1 TR
0.5 04 0.6 0.5 0.5 0.6 D5 025

1s not a solution of the equation, by the preceding theorem it follows that the
equation has no solutions.

Fuzzy Relations 25



Max-t-Norm Composition
4

Fuzzy Relations 36



Properties
3
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Properties
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Min —; Composition

Let T be an arbitrary continuous t-norm and —7 be the R-implication defined
as

x —ry=sup{zlx T z < y}.

Fuzzy Relations 39



Min —; Composition

Proposition 3.32. For any z,y, 2z € [0,1]| and for any t-norm T the residual
implication —7 has the following properties:

(i) 2T (x -1 y) < y.

(i) x =1 (2Ty) 2 y.

(i) (x -7 y) >17 Yy > .

Fuzzy Relations 40



Min —; Composition

Fuzzy Relations 41



Min —; Composition
O3

Proposition 3.34. If R, S € F(X X Y) are such that R < S and if Q €
F(Y x Z) then Rar Q > S<Q.

Fuzzy Relations 42



Fuzzy Relational Equations with Max-t-
Norm and Min —; Compositions

We consider the following two fuzzy relational equations with max-t-norm
and min —7 compositions

ROTPZQ

and
R<1TP=Q

with Re F(X xY),Pe F(Y xZ)and Q € F(X x Z).
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Fuzzy Relational Equations with Max-t-
Norm and Min —; Compositions

Theorem 3.35. The following inequalities hold true:
(P= R Yap (Ror P);
(ii) Ror (R <ar Q) < Q;
(iii) R < (P <r (Ror P)~1)~1;
(iv) (Par Q) tor P<Q.

Fuzzy Relations
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Fuzzy Relational Equations with Max-t-
Norm and Min —; Compositions

Theorem 3.36. (Sanchez [129], Miyakoshi-Shimbo [112]) (i) Consider the
equation Rop P = Q with unknown P. The equation has solutions if and only
if R=Y <7 Q is a solution and in this case it is the greatest solution of this
equation.

(i) Consider the equation Rop P = Q) with unknown R. The equation has
solutions if and only if (P <1Q~1)~1 is a solution and in this case it is the
greatest solution of this equation.
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Fuzzy Relational Equations with Max-t-
Norm and Min —; Compositions

Theorem 3.37. The following inequalities hold true:
(i) (Q<r P~')ar P > Q;
(ii) (R<r P)<r P~1 > R;
(113) R~ op (R <7 P) < P;
(iv) R<ir (R~ Yor Q) > Q.

Fuzzy Relations
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Fuzzy Relational Equations with Max-t-
Norm and Min —; Compositions

Theorem 3.38. (Miyakoshi-Shimbo [112]) (i) Consider the equation R <p
P = Q with unknown R. The equation has solutions if and only if Q <r P~}
15 a solution and in this case it is the greatest solution of this equation.

(ii) Consider the equation R<r P = Q with unknown P. The equation has

solutions if and only if R~ or Q is a solution and in this case it is the least
solution of this equation.
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The Use of Neural Networks

R Aim: To illustrate the way in which fuzzy relation
equations can be represented by neural networks.

R Our discussion is restricted to the form:

PoQ:R,

where o is the max-product composition. Let P = [p;;], Q = [gjx]. R = [ri], where
i € N,,j € Ny,k € N;. We assume that relations Q and R are given, and we want to

determine P. The above equation represents the set of equations
max . .k —_— r.
jeti., Pijq; ik

foralli e N,, k € N,.
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The Use of Neural Networks

R To solve for pij, we can use a feedforward neural
network with m inputs and only one layer with n
neurons.

R The activation function employed by the neurons is
not the sigmoid function, but the so-called linear
activation function f defined by:

0 ifa<O
f@={a "ifae]0,1]
b ey el

Fuzzy Relations 49



The Use of Neural Networks

R The output y; of neuron i is defined by
Yo = f(max Wix;) (i €N,).

The training set consists of columns g, of matrix Q as
inputs (X; = gy for each j in N, kin N) and columns 1, of
matrix R as expected outputs (y; = r; for eachiin N,, k in
N,).

Fuzzy Relations
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The Use of Neural Networks

&R The solution is then expressed by the weights W;; as

pij=W;
foralli € N,, j € N,,.

Fuzzy Relations
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The Use of Neural Networks

l —.Wll t\v2l wml
2 - >
w 2 Wiz W
len [Wzn lw
Y J’ Y ; Yy
ON, ON, S o ON,
Y1 Y2 Ym

Fuzzy Relations
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The Use of Neural Networks:
Example

w2)-3]

We form a neural network with three inputs and three neurons in the output layer. The training
set consists of only one input (.1, .2, .3) and one expected output (.12,.18, .27). This training
pair is applied to the learning algorithm repeatedly until the error function reaches zero. The
speed of convergence depends on the choice of initial values of the weights and on the chosen
learning rate. In our experiment, the cost function reached zero after 109 cycles. The final
weights are shown in NextFig. Hence, the solution is

1324 2613 4
P=| 2647 404 6 |.
2925 3636 .9
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The Use of Neural Networks:

Example

0.1324 0.2613 04
B S
0.2647 5404 0.6
3 = - %
0.2925 0.5636 0.9

YYY Y Yvyvy

ON, ON, ON,

Y1 Y2 Y3

Fuzzy Relations

54



