Ch 3: Fuzzy Relations

Classical Relation

Definition 3.1. (Classical relation). A subset $R \subseteq X \times Y$ where X and Y are classical sets, is a classical relation.

A classical relation can be characterized by a function $R: X \times Y \to \{0, 1\}$,

$$R(x,y) = \begin{cases} 1 & \text{if } (x,y) \in R \\ 0 & \text{otherwise} \end{cases}.$$

Fuzzy Relation

03

Definition 3.2. (Fuzzy Relation, Sanchez [129], Di Nola-Sessa-Pedrycz-Sanchez [48], De Baets [42]) Let X, Y be two classical sets. A mapping $R: X \times Y \to [0,1]$ is called a **fuzzy relation**. The number $R(x,y) \in [0,1]$ can be interpreted as the degree of relationship between x and y.

Remark 3.3. A fuzzy relation can be seen as a fuzzy subset of the set $X \times Y$. We denote by $\mathcal{F}(X \times Y)$ the family of all fuzzy relations between elements of X and Y.

03

Example 3.4. R = "much greater than"

$$R(x,y) = \begin{cases} \frac{1}{1 + \frac{100}{(x-y)^2}} & if \quad x > y \\ 0 & otherwise \end{cases}.$$

Representation

03

A fuzzy relation between elements in two finite sets $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ can be represented as a matrix

$$R = \begin{pmatrix} R(x_1, y_1) & R(x_1, y_2) & \dots & R(x_1, y_n) \\ R(x_2, y_1) & R(x_2, y_2) & \dots & R(x_2, y_n) \\ \dots & \dots & \dots & \dots \\ R(x_m, y_1) & R(x_m, y_2) & \dots & R(x_m, y_n) \end{pmatrix}.$$

Different Representations

Membership matrix

Sagittal diagram

×	У	R(x, y)	
1	1	.7	
1	3	.3	
2	2	.7	
2 3 3	3	1	
3	1	.9	
3	4	1	
4	3	8	
4	4	.5	

Table

03

Let R be a fuzzy relation between the two sets $X = \{\text{New York City, Paris}\}\$ and $Y = \{\text{Beijing, New York City, London}\}\$, which represents the relational concept "very far." This relation can be written in list notation as

$$R(X, Y) = 1/NYC$$
, Beijing + $0/NYC$, NYC + $.6/NYC$, London + $.9/Paris$, Beijing + $.7/Paris$, NYC + $.3/Paris$, London.

This relation can also be represented by the following two-dimensional membership array (matrix):

	NYC	Paris
Beijing	1	.9
NYC	0	.7
London	.6	.3

Fuzzy Set Operations

$$N(R(x, y)) = \bar{R}(x, y) = 1 - R(x, y),$$

$$(R \vee S)(x,y) = R(x,y) \vee S(x,y),$$

$$(R \wedge S)(x, y) = R(x, y) \wedge S(x, y).$$

T-Norm, T-Conorm, and The Inverse (Transpose)

$$R^{-1}(x,y) = R(y,x),$$

$$T(R, P)(x, y) = T(R(x, y), P(x, y)),$$

$$S(R, P)(x, y) = S(R(x, y), P(x, y)),$$

where T, S are a t-norm and a t-conorm respectively.

Max-Min Composition

03

Definition 3.5. Let $R \in \mathcal{F}(X \times Y)$ and $S \in \mathcal{F}(Y \times Z)$ be fuzzy relations. Then $R \circ S \in \mathcal{F}(X \times Z)$, defined as

$$R \circ S(x,z) = \bigvee_{y \in Y} R(x,y) \wedge S(y,z),$$

is called the max-min composition of the fuzzy relations R and S.

If $R \in \mathcal{F}(X \times X)$ then we can define $R^2 = R \circ R$, and generally $R^n = R \circ R^{n-1}$, $n \ge 2$.

Max-Min Composition: Discrete Case

Let $X = \{x_1, ..., x_n\}$, $Y = \{y_1, ..., y_m\}$, and $Z = \{z_1, ..., z_p\}$ be finite sets. If $R = (r_{ij})_{i=1,...,n,j=1,...,m} \in \mathcal{F}(X \times Y)$, and $S = (s_{jk})_{j=1,...,m,k=1,...,p} \in \mathcal{F}(Y \times Z)$ are discrete fuzzy relations then the composition $T = (t_{ik})_{i=1,...,n,k=1,...,p} = R \circ S \in \mathcal{F}(X \times Z)$ is given by

$$t_{ik} = \bigvee_{j=1}^{m} r_{ij} \wedge s_{jk},$$

$$i = 1, ..., n, k = 1, ..., p.$$

Example 3.7. If
$$R = \begin{pmatrix} 0.3 & 0.7 & 0.2 \\ 1 & 0 & 0.9 \end{pmatrix}$$
 and $S = \begin{pmatrix} 0.8 & 0.3 \\ 0.1 & 0 \\ 0.5 & 0.6 \end{pmatrix}$ then $R \circ S = \begin{pmatrix} 0.3 & 0.3 \\ 0.8 & 0.6 \end{pmatrix}$.

03

$$\begin{bmatrix} .3 & .5 & .8 \\ 0 & .7 & 1 \\ .4 & .6 & .5 \end{bmatrix} \circ \begin{bmatrix} .9 & .5 & .7 & .7 \\ .3 & .2 & 0 & .9 \\ 1 & 0 & .5 & .5 \end{bmatrix} = \begin{bmatrix} .8 & .3 & .5 & .5 \\ 1 & .2 & .5 & .7 \\ .5 & .4 & .5 & .6 \end{bmatrix}.$$

For example,

$$.8(=r_{11}) = \max[\min(.3, .9), \min(.5, .3), \min(.8, 1)]$$

$$= \max[\min(p_{11}, q_{11}), \min(p_{12}, q_{21}), \min(p_{13}, q_{31})],$$

$$.4(=r_{32}) = \max[\min(.4, .5), \min(.6, .2), \min(.5, 0)]$$

$$= \max[\min(p_{31}, q_{12}), \min(p_{32}, q_{22}), \min(p_{33}, q_{32})].$$

03

Proposition 3.8. (i) The max-min composition is associative, i.e.,

$$(R \circ S) \circ Q = R \circ (S \circ Q),$$

where
$$R \in \mathcal{F}(X \times Y)$$
, $S \in \mathcal{F}(Y \times Z)$ and $Q \in \mathcal{F}(Z \times U)$.
(ii) Let $R_1, R_2 \in \mathcal{F}(X \times Y)$ and $Q \in \mathcal{F}(Y \times Z)$. If $R_1 \leq R_2$ then

$$R_1 \circ Q \leq R_2 \circ Q$$
.

Proposition 3.9. For any
$$R, S \in \mathcal{F}(X \times Y)$$
 and $Q \in \mathcal{F}(Y \times Z)$ we have $(i) \ (R \vee S) \circ Q = (R \circ Q) \vee (S \circ Q)$ $(ii) \ (R \wedge S) \circ Q \leq (R \circ Q) \wedge (S \circ Q)$.

Remark 3.10. Equality in (ii) does not hold. Indeed, if we consider
$$R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $S = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ then $(R \wedge S) \circ Q = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ while $(R \circ Q) \wedge (S \circ Q) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Min-Max Composition

03

Definition 3.11. (e.g. Nobuhara-Bede-Hirota [118]) Let $R \in \mathcal{F}(X \times Y)$ and $S \in \mathcal{F}(Y \times Z)$. Then $R \bullet S \in \mathcal{F}(X \times Z)$, defined as

$$R \bullet S(x,z) = \bigwedge_{y \in Y} R(x,y) \lor S(y,z)$$

is called the min-max composition of the fuzzy relations R and S.

Example 3.12. If
$$R = \begin{pmatrix} 0.3 & 0.7 & 0.2 \\ 1 & 0 & 0.9 \end{pmatrix}$$
 and $S = \begin{pmatrix} 0.8 & 0.3 \\ 0.1 & 0 \\ 0.5 & 0.6 \end{pmatrix}$ then

$$R \bullet S = \left(\begin{array}{cc} 0.5 & 0.3 \\ 0.1 & 0 \end{array} \right).$$

03

Proposition 3.13. (i) The min-max composition is associative, i.e., for any $R \in \mathcal{F}(X \times Y)$, $S \in \mathcal{F}(Y \times Z)$ and $T \in \mathcal{F}(Z \times U)$ we have

$$(R \bullet S) \bullet T = R \bullet (S \bullet T).$$

(ii) Consider
$$R_1, R_2 \in \mathcal{F}(X \times Y), Q \in \mathcal{F}(Y \times Z)$$
. If $R_1 \leq R_2$ then

$$R_1 \bullet Q \leq R_2 \bullet Q.$$

Proposition 3.14. For any
$$R, S \in \mathcal{F}(X \times Y)$$
 and $T \in \mathcal{F}(Y \times Z)$ we have (i) $(R \wedge S) \bullet T = (R \bullet T) \wedge (S \bullet T)$. (ii) $(R \vee S) \bullet T \geq (R \bullet T) \vee (S \bullet T)$.

$$\begin{array}{lll} \textbf{Remark 3.15.} & \textit{Equality in (ii) does not hold. Indeed, } R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \, S = \\ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \, T = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \, then \, (R \vee S) \bullet T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \, while \, (R \bullet T) \vee (S \bullet T) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}. \end{array}$$

03

Proposition 3.16. If we consider the standard negation we have $\overline{R \circ S} = \overline{R} \bullet \overline{S}$ and $\overline{R \bullet S} = \overline{R} \circ \overline{S}$.

Generalization

03

Remark 3.17. The min-max composition can be naturally generalized to min-t-conorm compositions

$$R \bullet_S P(x,z) = \bigwedge_{y \in Y} R(x,y) SP(y,z),$$

where S is an arbitrary t-conorm.