Research notes

Another realization of an all-pass or a notch filter using a current conveyor[†]

AHMED M. SOLIMAN

The College of Steubenville, Steubenville, Ohio 43952, U.S.A.

[Received 3 July 1972]

A canonic circuit, using the second generation current conveyor is described for realizing an all-pass or a notch characteristics.

The use of the second generation current conveyor (Sedra and Smith 1970) in realizing an all-pass transfer function was recently discussed by Soliman (1973). The purpose of this letter is to give an alternative canonical realization (uses the minimum number of capacitors) for the 2π all-pass transfer function. By adjusting one resistor, the network realizes a notch filter.

The voltage transfer function of the circuit shown in the figure is given by :

$$\frac{V_{\rm o}}{V_{\rm in}} = \frac{K}{K+1} \frac{s^2 C^2 R^2 - \left(\frac{1}{2K} - 2\right) s C R + 1}{s^2 C^2 R^2 + 2s C R + 1}.$$
 (1)

Another realization of an all-pass or a notch filter using CCII.

If K = 0.125, an all-pass transfer function results. Its phase shift is given by

$$\phi = 2 \tan^{-1} \left(\frac{2}{X}\right) \tag{2}$$

[†] Communicated by the Author.

Research notes

where

.

$$X = \omega CR - \frac{1}{\omega CR}.$$
(3)

Note that the circuit has similar phase characteristics as those given by Williams (1970).

The same circuit realizes a notch filter having a pole Q of 0.5 if K = 0.25.

References

SEDRA, A., and SMITH, K. C., 1970, *I.E.E.E. Trans. Circuit Theory*, **17**, 132. SOLIMAN, A. M., 1973, *I.E.E.E. Trans. Circuit Theory*, **20**, 80. WILLIAMS, P., 1970, *Electron. Lett.*, **6**, 184.