Effect of relative humidity on temperature and current distributions within a segmented H 2/air PEM fuel cell

Citation:
Abdullah, A. M., A. M. Mohammad, T. Okajima, F. Kitamura, and T. Ohsaka, "Effect of relative humidity on temperature and current distributions within a segmented H 2/air PEM fuel cell", Nanostructured Materials for Energy Storage and Conversion - 219th ECS Meeting, vol. 35, issue 34, Montreal, QC, pp. 293 - 302, 2011.

Date Presented:

2011

Abstract:

The effect of the operating relative humidity (RH) values on the temperature and current distributions within a 5-5 segmented H 2/air polymer electrolyte membrane fuel cell was studied. Different relative humidity values were applied ranging from 0 to 100%. All the measurements were done at a constant potential mode rather than a constant current mode. While the temperature distributions in front of the 5 subcells at different RH values were measured using thermocouples inserted at the back of the graphite current collectors, and the current distributions within these 5 subcells were measured using 5 potentiostats that have been used as zero resistance ammeters. The results show significant temperature gradients at the different loads as a function of the operating RH values. In addition, the fraction of current (α) passed through every subcell revealed interesting behaviors at the corresponding RH values. ©The Electrochemical Society.

Notes:

Conference code: 93652Export Date: 28 February 2016Correspondence Address: Abdullah, A.M.; Department of Chemical and Petrochemicals Engineering, Egypt Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, EgyptReferences: Barbir, F., (2005) PEM Fuel Cells: Theory and Practice, p. 456. , Academic Press, USA, MA;Saleh, M.M., Okajima, T., Hayase, M., Kitamura, F., Ohsaka, T., (2007) J. Power Sources, 164, p. 503;
Yoshimoto, T., Inoue, G., Matsukuma, Y., Minemoto, M., (2006) J. Chem. Eng. Jpn., 39, p. 537;
Susai, T., Kaneko, M., Nakato, K., Hamada, A., Miyake, Y., (2001) Int. J. Hydrogen Energy, 26, p. 631;
Sinha, P.K., Wang, C.-Y., Beuscher, U., (2007) J. Electrochem. Soc., 154, pp. B106;
Yan, X., Hou, M., Sun, L., Cheng, H., Hong, Y., Liang, D., Shen, Q., Yi, B., (2007) J. Power Sources, 163, p. 966;
Amirinejad, M., Rowshanzamir, S., Eikani, M.H., (2006) J. Power Sources, 161, p. 872;
Tang, Y., Zhang, J., Song, C., Liu, H., Zhang, J., Wang, H., MacKinnon, S., Kozak, P., (2006) J. Electrochem. Soc., 153, pp. A2036;
Abdullah, A.M., Okajima, T., Mohammad, A.M., Kitamura, F., Ohsaka, T., (2007) J. Power Sources, 172, p. 209;
Abdullah, A.M., Okajima, T., Kitamura, F., Ohsaka, T., (2008) Electrochem. Commun., 10, p. 1732;
Abdullah, A.M., Mohammad, A.M., Okajima, T., Kitamura, F., Ohsaka, T., (2009) J Power Sources, 190, p. 264;
Abdullah, A.M., Okajima, T., Kitamura, F., Ohsaka, T., (2008) ECS Transactions, p. 543;
Pérez, L.C., Brandão, L., Sousa, J.M., Mendes, A., (2011) Renewable and Sustainable Energy Reviews, 15, p. 169;
Zhang, G., Guo, L., Ma, L., Liu, H., (2010) J Power Sources, 195, p. 3597;
Shimoi, R., Masuda, M., Fushinobu, K., Kozawa, Y., Okazaki, K., (2004) J. Energy Resour.- ASME, 126, p. 258;
Tsushima, S., Teranishi, K., Hirai, S., (2004) Electrochem. Solid - St., 7, pp. A269;
Su, A., Sun, C.C., Weng, F.B., Chen, Y.M., (2003) Exp. Heat Transfer, 16, p. 97

Related External Link

Tourism