
Cairo University-Faculty of Science - Chemistry Department Physical Chemistry (Chem 102) for 1st Year Students

Questions for Final Exam. JUNE 2021 Time allowed: 90 min

- Choose the most correct answer and Write it down in the answer sheet (2 Marks for each point)

	nic masses, g/m	ol: H = 1, He = 4, C =	12, O = 16, Cu = 63	.546, N = 14, , Cl = 3	35),
		$1^{-1} K^{-1}$, R = 8.314 J molero's number = 6.022		ttm/mol K = 8.314 J/s	mol K =
1-	The direct conversion from a solid state to a gaseous state without passing by the listate is known as				
	(a) melting	(b) fusion	(c) condensa	tion (d) <u>sublim</u>	nation_
2-	- Temperature at which the vapor pressure of the liquid equals 1 atm is describin liquid's point				
	(a) boiling	(b) normal bo	oiling (c)Vaporizat	ion (d) norma	l freezing
(a) 3 &	≩ 7	captive zeros a (b) 3 & 6	(c) <u>2 & 6</u>	(d) 2 & 7	
4- If 34 g of ammonia is reacted with 300 g copper (II) oxide according to the following reaction, the mass of evolved nitrogen (N ₂) gas will be g $NH_3(g) + CuO(s) \rightarrow N_2(g) + Cu(s) + H_2O(g)$					
(a) 14		(b) <u>28</u>	(c) 56	(d) None of these	2
5-	A gas's pressu (a) <u>0.25</u>	re is 190 torr. On the (b) 0.5	atmospheric scale, it (c) 4	should read a (d) None o	
	crease of	ertain gas increases w (b) increase of Temperature	ith (c) decrease of average kinetic energy	(d) can't tell	
	-	f an ideal gas (in a 5.0 20 K. Calculate the n		•	and
	738 atm	(b) 1.0 atm	(c) 8.8 atm	(d) 1.35 atm	
8- At	the same tempe	erature, oxygen gas mo	olecules diffuse faster	than	

c)
$$H_2SO_{4(1)} \rightarrow H_{2(g)} + S_{(s)} + 2O_{2(g)}$$

$\underline{d} H_{2(g)} + \underline{S}_{(s)} + \underline{2O}_{2(g)} \longrightarrow \underline{H}_{2}\underline{SO}_{4(1)}$

18-How much heat is evolved when 248 g of white phosphorus $(P_{4(s)})$ burn in air?

 $P_{4(s)} + 5O_{2(g)} \longrightarrow P_4O_{10(s)}$, $\Delta H = -3013$ kJ (Atomic weight of P is 31.0 g/mol)

- a) -6026 kJ
- bz) -24104 kJ
- c) -12.15 kJ
- d) -1506.5 kJ

19-The fundamental equation representing the first law of thermodynamic for a closed system is

- a) $\Delta E = q + w$
- b) $\Delta H = q + w$
- c) $\Delta E = q + \Delta H$
- d) $\Delta E = q$

20- ΔE of the system for a process in which the system releases 140 J of heat to the surroundings and does 85 J of work on the surroundings is......

- a) 225 J
- b) -225 J
- c) 55 J
- d) -55 J

21-The equilibrium constant K_C for the following reaction

 $2 \text{ NO } (g) + \text{Cl}_2 (g) = 2 \text{ NOCl } (g)$ is: (the answer is a)

a. $\frac{[NOCi]^2}{[NO]^2 [Ci2]}$

c. $\frac{[NOCl]}{[NO][Cl2]}$

b. $\frac{[NO]^2 [Cl2]}{[NOCl]^2}$

 $d. \frac{[NOCl]^2}{[NO]^2 [Cl]^2}$

22- For the reaction: $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$, $K_C = 1$ at 1100 K, the calculated reaction quotient (Q)= 4. This indicates that ..

- a. Products are excess and the system should shift to right to attain equilibrium.
- b. Products are excess and the system should shift to left to attain equilibrium.
- c. Reactants are excess and the system should shift to right to attain equilibrium.
- d. Reactants are excess and the system should shift to left to attain equilibrium

23- If K_C for the forward reaction: $N_2(g) + O_2(g) \rightarrow 2$ NO (g) is 3, then the value of K_C for the backward reaction is

- a. -3
- b. 0.33
- c. -0.33

d. 3

24- If the forward reaction is endothermic, then K_C increases with

- a. Increasing temperature
- c. Increasing time
- b. Decreasing temperature
- d. Decreasing time

25-Acid is an

a - electron acceptor . b - electron donor .

c - proton acceptor . \underline{d} - proton donor .

26-Half neutralization the acid and its salt is called

 $\begin{array}{ll} a \text{ - turbid solution .} & b \text{ - } \underline{\text{buffer solution}} \text{ .} \\ c \text{ - green solution .} & d \text{ - none of the above .} \end{array}$

27-....is the particle that remains when an acid has donated a hydrogen ion .

a - conjugate acid . b - <u>conjugate base</u> .

c - ion pair . d - none of the above .

28- What is the concentration of OH⁻ ions in a HCL solution whose Hydrogen ion concentration is 1.3 M?

 $a - \underline{7.7 \times 10^{\text{-}15}\,\text{M}} \; . \qquad \qquad b - 7.7 \times 10^{\text{-}13}\,\text{M} \; .$

 $c - \overline{7.7 \times 10^{-11} \, M} \, . \qquad \qquad d - 7.7 \times 10^{-9} \, M \, .$

29-The OH $^{\mbox{\tiny -}}$ ion concentration of a blood sample is $2.5\times 10^{\mbox{\tiny -}^{\mbox{\tiny -}}}\,M$. What is the pH of the blood ?

a - 6.6. $\underline{b-7.4}$.

c - 14. d - 5.

30-The pH of a $0.050\,\mathrm{M}$ weak acid is 2.00. What is the percentage ionization?

a - 20%. b - 70%.