# Lecture 8

Spring 2022

# General Chemistry II Chem 102

Colligative Properze

Ahmad Alakraa

# **Types of Solutions**

| Solute | Solvent | Solution | Example                                     |  |
|--------|---------|----------|---------------------------------------------|--|
| Gas    | Gas     | Gas      | Air, natural gas                            |  |
| Gas    | Liquid  | Liquid   | O <sub>2</sub> in H <sub>2</sub> O, Soda    |  |
| Gas    | Solid   | Solid    | H <sub>2</sub> in Pt                        |  |
| Liquid | Gas     | Gas      | Moisture in air                             |  |
| Liquid | Liquid  | Liquid   | Alcohol in H <sub>2</sub> O                 |  |
| Liquid | Solid   | Solid    | Hg in Ag, Drops f H <sub>2</sub> O in sugar |  |
| Solid  | Gas     | Gas      | Dust in air                                 |  |
| Solid  | Liquid  | Liquid   | NaCl in H <sub>2</sub> O, sea water         |  |
| Solid  | Solid   | Solid    | Alloys (Brass, steel)                       |  |

# **Strong Electrolyte**

Substances that are completely ionized (i.e., conduct electricity efficiently) when they are dissolved in water. Examples include soluble salts, strong acids, and strong bases.







### Weak Electrolyte

- Substances that exhibit a small degree of ionization in water (i.e., conduct only a small current).
- They produce relatively few ions when dissolved in water.
- Examples include weak acids (acetic acid) and weak bases (ammonia).



$$HC_2H_3O_2(aq.) + H_2O(l) \leftrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$$

#### Nonelectrolyte

- Substances that dissolve in water but do not produce any ions (i.e., non conductors for electricity).
- Examples include ethanol and glucose





# colutions'

# Think Why?

- We add antifreeze to water in a car's cooling system to prevent freezing in winter and boiling in summer.
- We also melt ice on sidewalks and streets by spreading salt.

Think: Solute's effect on the solvent's properties

### **Colligative Properties**

Properties that depend only on the number (concentration) of solute particles in a solution and do not depend on the identity of the solute.

- Consider two aqueous solutions of the same concentration; one containing glucose and the other containing urea.
  - The impact of solute on the solvent's properties is the same for both solutions.

## **Colligative Properties**

- Vapor-pressure lowering
- Boiling-point elevation
- Freezing-point depression
- Osmotic pressure generation

#### **VP Lowering**

- The dissolution of a nonvolatile solute in a solvent decreases the number of solvent molecules per unit volume.
- It should lower the escaping tendency of the solvent molecules.





**Solution** 

**Pure Solvent** 

#### Raoult's Law

The change in vapor pressure is proportional to the quantity of the dissolved solute.

$$P_{\text{solution}} = X_{\text{solvent}} \times P_{\text{solvent}}^{o}$$

P<sub>solution</sub>: the vapor pressure of the solution

**X**<sub>solvent</sub>: the mole fraction of the solvent

P<sub>solvent</sub>: is the vapor pressure of pure solvent.

#### **Exercise**

Calculate the expected vapor pressure at 25°C for a solution prepared by dissolving 158.0 g common table sugar (sucrose, molar mass 342.3 g/mol) in 643.5 cm<sup>3</sup> of water. At 25°C, the density of water is 0.9971 g/cm<sup>3</sup> and its vapor pressure is 23.76 torr.

#### Solution

Number of moles of sucrose = 
$$\frac{158.0 \text{ g}}{342.3 \text{ g}/\text{mol}}$$
$$= 0.4616 \text{ mol}$$

#### Number of moles of H<sub>2</sub>O

$$= \frac{(643.5 \text{ cm}^3) (0.9971 \text{ g/cm}^3)}{18 \text{ g/mol}} = 35.60 \text{ mol}$$

$$P_{\text{solution}} = X_{\text{solvent}} \times P_{\text{solvent}}^{0} =$$

$$\frac{35.60}{36.06} \times 23.76 \text{ torr} = 23.46 \text{ torr}$$

Both liquids are volatile- Obey Raoult's Law



$$\mathbf{P_T} = \mathbf{P_A} + \mathbf{P_B} = \mathbf{X_A} \; \mathbf{P_A^o} + \mathbf{X_B} \; \mathbf{P_B^o}$$













# Non-ideal solutions

Both liquids are volatile but disobey (deviate from) Raoult's Law
Deviation



- Solvent has a special affinity to solute
   e.g., H-bonding
  - H.C.  $C = 0 \cdot \cdot \cdot \cdot \cdot H = 0$

- Solvent has no affinity to solute
- Solute-solvent interaction is weaker than in pure liquids

# -Ve +Ve

- Observed VP < Predicted VP by Raoult's Law</p>
- $\bot$   $\Delta H_{sol}$  is -Ve
- Exothermic

- Observed VP > Predicted VP by Raoult's Law
- $+\Delta H_{sol}$  is +Ve
- **4** Endothermic

# Non-ideal solutions

| Interactive forces<br>between solute (A)<br>and solvent (B)<br>particles | ΔH <sub>soln</sub>   | Deviation<br>from<br>Raoult's law | Example              |
|--------------------------------------------------------------------------|----------------------|-----------------------------------|----------------------|
| A-A, $B-B = A-B$                                                         | Zero                 | Zero                              | Benzene –<br>toluene |
| A-A, B-B < A-B                                                           | Negative exothermic  | Negative                          | Acetone –<br>water   |
| A-A, B-B > A-B                                                           | Positive endothermic | Positive                          | Ethanol –<br>hexane  |

# -Ve Deviation



# +Ve Deviation



# Ideal/Non-ideal



no deviation Ideal solution

-ve deviationStrong solute-solventInteractions

+ve deviation
Weak solutesolvent
Interactions

#### **Exercise**

♣ A solution is prepared by mixing 5.81 g acetone (M.wt. = 58.1 g/mol) and 11.9 g chloroform (M.wt. = 119.4 g/mol). At 35°C this solution has a total v.p. of 260 torr. Is this an ideal solution? The v.p. of pure acetone and pure chloroform at 35°C are 345 and 293 torr, respectively.

# Solution



Note H-bonding



-Ve Deviation

$$\mathbf{n_{acetone}} = \frac{5.81 \text{ g}}{58.1 \text{ g/mol}} = 0.1 \text{ mol}$$

$$\mathbf{n_{chloroform}} = \frac{11.9 \text{ g}}{111.9 \text{ g/mol}} = 0.1 \text{ mol}$$

$$\mathbf{X_{acetone}} = \frac{\mathbf{n_{acetone}}}{\mathbf{n_{acetone}} + \mathbf{n_{chloroform}}} = \frac{0.1}{0.1 + 0.1} = 0.5$$

$$X_{chloroform} = 1 - 0.5 = 0.5$$
 $P_{T} = P_{A} + P_{B} = X_{A} P_{A}^{o} + X_{B} P_{B}^{o}$ 
 $= (0.5 \times 345) + (0.5 \times 293)$ 
 $= 319 \text{ torr} > 260 \text{ torr}$ 

-Ve Deviation

Phase diagrams of water and a solution of a nonvolatile solute



- A non-volatile solute lowers the vapor pressure of solution at every T
- The solid-liquid interface moves to left
- Solid-gas interface is not affected

#### **BP** elevation

- Normal boiling point of a liquid: the temperature at which its vapor pressure equals 1 atm.
- When a nonvolatile solute is added to a pure solvent, the vapor pressure of the solvent decreases.
- Such a solution must be heated to a higher temperature than the boiling point of the pure solvent to reach a vapor pressure of 1 atm, i.e., the boiling point increases.

#### van't Hoff factor i

Expresses the relation between the moles of solute dissolved and the moles of particles in solution

$$i = \frac{\text{moles of particles in solution}}{\text{moles of solute dissolved}}$$

for NaCl 
$$i=2$$
 NaCl  $\rightarrow$  Na<sup>+</sup> + Cl<sup>-</sup>
for K<sub>2</sub>SO<sub>4</sub>  $i=3$  K<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  2 K<sup>+</sup> + SO<sub>4</sub><sup>2-</sup>
for Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>  $i=5$ 
Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>  $\rightarrow$  3 Fe<sup>3+</sup> + 2 PO<sub>4</sub><sup>3-</sup>
for Glucose  $i=1$  Glucose is not dissociate

♣ The boiling point elevation is proportional to the number of moles of the solute added to the solvent.

$$\Delta T_b = i K_b m_{solute}$$

Here,  $\Delta T_b$  is the boiling-point elevation, i is the ionization factor,  $K_b$  is the boiling-point elevation constant, and  $m_{solute}$  is the molal concentration (molality) of the solution.

#### **Exercise**

Calculate the boiling point of 0.2 m aqueous solution of glucose. (K<sub>b</sub> of water is 0.5 12°C/m)

#### Solution

$$\Delta T_b = i K_b m_{solute}$$

$$= 1 \times 0.512 \, {}^{o}C/m \times o.2 \, m = 0.1 \, {}^{o}C$$

BP of 0.2 m glucose

$$= 100 + 0.1 = 100.1 \,^{\circ}C$$

# FP depression

- ♣ FP: the temperature at which the vapor pressures of solid and liquid states of a given material become equal.
  Liquid ←→ Solid
- The presence of the solute lowers the rate at which molecules in the liquid return to the solid state



water  $\leftrightarrow$  lce

Solution ↔ Ice

♣ The freezing-point depression is proportional to the number of moles of the solute added to the solvent.

$$\Delta T_f = i K_f m_{solute}$$

Arr Here, Arr is the freezing-point depression, i is the ionization factor, Arr is the freezing-point depression constant, and Arr is the molal concentration (molality) of the solution.

#### **Exercise**

Calculate the freezing point of 2 m aqueous solution of glucose? (K<sub>f</sub> of water is 1.86 °C/m)

#### Solution

$$\Delta T_f = i K_f m_{solute}$$
  
= 1 × 1.86 ° C/m × 2 m = 3.7 ° C

FP of 2 m glucose

$$= 0 - 3.7 = -3.7$$
°C

#### **Osmosis**

- Consider a solution and pure solvent are separated by a semipermeable membrane, which allows solvent but not solute molecules to pass through.
- As time passes, the volume of the solution increases and that of the solvent decreases.



- Osmosis: a phenomenon of flowing a solvent into a solution through a semipermeable membrane.
- Eventually the liquid levels stop changing, indicating that the system has reached equilibrium.
- Because the liquid levels are different at this point, there is a greater hydrostatic pressure on the solution than on the pure solvent.
- This excess pressure is called the osmotic pressure.

## Osmotic Pressure, π

The pressure required or applied to the solution to stop the flow of the solvent or to stop osmosis.

The osmotic pressure and concentration are related by the following equation:

$$\pi = iMRT$$

$$\pi V = inRT$$

M is the molar concentration of the solute, R is the gas constant, and T is the absolute temperature.



Semipermeable membrane

#### **Exercise**

♣ To determine the molar mass of a certain protein, 1.00 × 10<sup>-3</sup> g of it was dissolved in enough water to make 1.00 mL of solution. The osmotic pressure of this solution was found to be 1.12 torr at 25.0°C. Calculate the molar mass of the protein?

$$\pi = 1.12 \text{ torr} \times \frac{1 \text{ atm}}{760 \text{ torr}} = 1.47 \times 10^{-3} \text{atm}$$

$$M = \frac{\pi}{RT} = \frac{1.47 \times 10^{-3} \text{atm}}{(0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}) (298 \text{ K})}$$
$$= 6.01 \times 10^{-5} \text{mol L}^{-1}$$

$$M = 6.01 \times 10^{-5} \text{mol L}^{-1} = \frac{n}{V} = \frac{m}{\text{Mwt} \times V}$$
$$= \frac{1.0 \times 10^{-3} \text{g}}{\text{Mwt} \times 1.0 \times 10^{-3} \text{L}}$$

Mwt (protein molar mass) = 
$$1.66 \times 10^4$$
 g

#### **Exercise**

The observed osmotic pressure for a 0.1 M solution of  $Fe(NH_4)_2(SO_4)_2$  at 25°C is 10 atm. Compare the expected and experimental values for i?

#### Solution

$$\pi = iMRT$$

$$Fe(NH_4)_2 (SO_4)_2 \rightarrow Fe^{2+} + 2NH_4^+ + 2SO_4^{2-}$$

Theoretically,  $\mathbf{i}_{exp} = 5$ 

# **Experimentally**

$$i = \frac{\pi}{MRT} = \frac{10 \text{ atm}}{(0.1 \text{ mol } L^{-1})(0.082 L \text{ atm } K^{-1} \text{mol}^{-1})(298 K)}$$

$$i_{obs} = 4.42$$

 $i_{obs} < i_{exp}$ 

Possibly because of ion pairing

#### **Dialysis**

- a similar process to osmosis but the membrane allows transfer of both solvent molecules and small solute molecules and ions.
- occurs at the walls of most plant and animal cells
- Applications: artificial kidney machines to purify blood



pure blood out

Essential ions and molecules remain in blood



# Reverse osmosis/Desalination

- ♣ If a solution in contact with pure solvent across a semipermeable membrane is subjected to an external pressure larger than its osmotic pressure, reverse osmosis occurs.
- The pressure will cause a net flow of solvent from the solution to the solvent.
- The semipermeable membrane acts as a "molecular filter" to remove solute particles.

The process of removing dissolved salts from seawater



# **Solar Desalination**

