Lecture 6

spring 2022

General Chemistry II Chem 102

Mermochemis Cont.

Ahmad Alakraa

Initial

- If A rolls down, part of PE_A converts to KE_A.
- Part of KE_A is lost as frictional heating
- Upon collision with B, the other part transfers to B (PE_B increases) i.e. ,work was done by ball A on B.
- Ball A lost specific (fixed) amount of its potential energy PE_{A. lost}.
- The amount of energy transferred in the form of work or heat may vary based on the conditions (e.g., surface roughness).

```
PE<sub>A, lost</sub> (fixed)=
PE<sub>B, gained</sub> (work, variable) +
Frictional Energy (Heat, variable)
```

Temperature, Heat, and Work

- <u>Temperature</u> is a property reflecting the random motions of particles in a substance.
- Heat is a form of energy. It involves the energy transfer between two objects due to a temperature difference.
- Work is the force acting over a distance.

State (path-independent) functions

System's properties that depend only on the system's present (initial and final) state not on the system's past or future (pathway)

State (path-independent) functions

✓ A change in state functions is independent of the particular pathway taken between the two states.

✓ ∆E is a state function; however, work and heat are both non-state functions (depend on the pathway).

State/Non-state functions

♣ State property (Functions): Functions which depend on the initial and final states of the system, not on the path it takes. (e.g., Internal energy, Temperature, Volume, Pressure).

♣ Path or non-State property (Functions): Functions which depend not only on the initial and final states of the system, but also on the path it takes. (e.g., Heat and Work; written dq or dw. Never written Δq or Δw).

Thermodynamics is largely concerned with relations between state functions which characterize systems.

Extensive/Intensive Properties

Extensive property (Functions): Functions which depend on the mass of the material (e.g., Internal energy, Volume)

Intensive Property (Functions): Functions which are independent of the mass of the material (e.g., Pressure, Temperature, Density, Molar quantities)

System/Surroundings

- System: volume of interest (reaction vessel, test tube, biological cell, atmosphere, etc.)
- Surroundings: volume outside a system

Open Systems

A system permitting the heat (Energy) and mass transfer between system & surroundings

Diathermic Walls: Walls permitting energy transfer as heat (such as steel and glass) ('dia' is the Greek word for "through").

Closed Systems

A system permitting the heat (Energy) but not mass transfer between system & surroundings

Isolated Systems

A system permitting neither the heat (Energy) nor mass transfer between system & surroundings

Adiabatic Walls: Walls that DO NOT permit energy transfer as heat.

No change in internal energy ($\Delta E=0$) **Adiabatic Wall** Heat Isolated System Matter Surroundings

No thermal contact

General conventions

Work

- ▶ If the <u>system does work on the surroundings</u>, then work (w) is negative.
- ► If the <u>surroundings does work on the system</u>, then work (w) is positive.

Heat

- ▶ If the <u>system loses heat to the surroundings</u>, then work (q) is negative.
- ▶ If the <u>system gains heat from the surroundings</u>, then work (q) is <u>positive</u>.

Chemical-Heat Energy Transformations

The combustion of methane: heating homes

$$CH_4(g) + 2O_2(g)$$

 $\rightarrow CO_2(g) + 2H_2O(g) + energy (heat)$

Exothermic Reactions: reactions result in the evolution of heat.

Endothermic Reactions: reactions that absorb energy from the surroundings.

Exothermic reactions: PE converts to Heat

Energy released to surroundings as heat

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) + energy$ (heat)

Endothermic reactions: Heat converts to PE

$$N_2(g) + O_2(g) + energy (heat) \rightarrow 2NO(g)$$

The First Law of Thermodynamics

Statements: (Energy is conserved)

- ► Energy can neither be created, nor destroyed.
- ► Energy can be converted from one form to another,
- ► Chemical and/or physical changes are accompanied by changes in energy.

Internal Energy (E): (KE + PE)

For infinitesimal متناهي الصغر changes in q and w:
dE = dq + dw

$$\Delta E = E_f - E_i = q + w$$
 (closed system)

 \triangleright For Isolated System: $\Delta E = 0$

- ☐ Heat flows into system (endothermic), q is positive
- ☐ Heat flows out of system (exothermic), q is negative
- ☐ System does work on surroundings (energy flows out of system), w is negative.
- ☐ Surroundings do work on system (energy flows into system), w is positive.

Exercise

A certain electric motor produced 15 kJ of energy each second as mechanical work and lost 2 kJ as heat to the surroundings. What is the change in the internal energy of the motor each second?

Solution

Energy is lost from the system as work

w is negative

$$w = -15 \text{ kJ}$$

Energy is also lost as heat, so

$$q = -2 \text{ kJ}.$$

Total change in internal energy is therefore:

$$\Delta E = -2 \text{ kJ} - 15 \text{ kJ} = -17 \text{ kJ}$$

Work of compression and expansion

Work: force applied over a distance.

$$\mathbf{w} = -\mathbf{F}\Delta\mathbf{h} = -\mathbf{P}\mathbf{A}\Delta\mathbf{h}$$

= $-\mathbf{P}\Delta\mathbf{V}$

Expansion wis - ve, ΔV is + ve

ΔV and w must have opposite signs

Enthalpy (H):

Heat change in a system at constant pressure

For process taking place at constant volume,

$$\mathbf{w} = -\mathbf{P}\Delta\mathbf{V} = 0$$

$$\Delta E = q_V + w = q_V$$

The increase or decrease in E of the system equals the heat absorbed or released, respectively, at constant volume.

☐ If a process is carried out at a constant pressure,

$$\mathbf{w} = -\mathbf{P}_{\mathrm{ex}}\Delta\mathbf{V} = -\mathbf{P}\Delta\mathbf{V}$$

$$\Delta E = q_P + w = q_P - P\Delta V$$

$$E_2 - E_1 = q_P - P(V_2 - V_1)$$

$$(E_2 + PV_2) - (E_1 + PV_1) = q_P$$

$$H_2 - H_1 = q_P$$

Standard Enthalpy Change of reactions, $\Delta_r H^o$

• the change in enthalpy for substances in their standard state (1 bar \approx 1 atm and 298 K)

Standard molar Enthalpy of formation, ΔH_f°

► Enthalpy change of a reaction for the formation of one mole of a compound directly from its elements in their standard states (1 bar \approx 1 atm and 298 K). ΔH^o_f for elements at their standard states are taken as zero

$$6C(s, gr) + 3H_2(g) \rightarrow C_6H_6(l)$$

 $\Delta H_f^0 (C_6H_6(l)) = 49 \text{ kJmol}^{-1}$

Enthalpies of Physical Change

• Changes in state have enthalpies associated with the transition, $\Delta_{\rm trans} {\rm H^o}$

Liquid-to-Gas, Δ_{vap} H° Solid-to-Liquid (fusion): Δ_{fus} H° Solid-to-Gas, Δ_{sub} H°

Reverse of a process involves only change of the sign

Enthalpies of Chemical Change

$$aA + bB \rightarrow cC + dD$$

$$\Delta_{\mathbf{r}} \mathbf{H}^{\mathbf{o}} = \sum_{\text{products}} \mathbf{v} \Delta \mathbf{H}_{\mathbf{m}}^{\mathbf{o}} - \sum_{\text{reac tan ts}} \mathbf{v} \Delta \mathbf{H}_{\mathbf{m}}^{\mathbf{o}}$$

v = stoichiometric coefficient of species

$$\Delta_{\mathbf{r}}H^o = \sum_{\text{products}} \mathbf{v}\Delta_{\mathbf{f}}H^o_m - \sum_{\text{reac tan ts}} \mathbf{v}\Delta_{\mathbf{f}}H^o_m$$

Exercise

Calculate $\Delta_r H^o$ for this reaction $2HN_3(I) + 2NO(g) \rightarrow H_2O_2(I) + 4N_2(g)$ Knowing that ΔH_f° (kJ/mol) for H_2O_2 (l) = -187.78, HN_3 (l) = 264, NO(g) = 90.25.

Solution ΔH_f° for $N_2(g) = 0$ (it is an element)

$$\Delta_{\mathbf{r}} \mathbf{H}^{0} = \Delta \mathbf{H}_{f}^{0} (\mathbf{H}_{2} \mathbf{O}_{2}) + 4 \Delta \mathbf{H}_{f}^{0} (\mathbf{N}_{2}) - 2 \Delta \mathbf{H}_{f}^{0} (\mathbf{H} \mathbf{N}_{3})
- 2 \Delta \mathbf{H}_{f}^{0} (\mathbf{N} \mathbf{O}) =
[(-187.78 + 0)] - [(2 \times 264) + (2 \times 90.25)]
= -896.28 \text{ kJmol}^{-1}$$