Lecture 10

spring 2022

General Chemistry II Chem 102

pH

Ahmad Alakraa

Acids and Bases

acids Proton donors e.g., HCl, H₂SO₄ Brønsted–Lowry

bases Protons acceptors, e.g., ammonia NH₃

$$\begin{array}{c} H - O : + H - C I : \longrightarrow \begin{bmatrix} H - O - H \end{bmatrix}^{+} + \begin{bmatrix} \vdots C I : \end{bmatrix}^{-} \\ H & H & \end{array}$$
Base
Acid
hydronium ion

Acids electron-pair acceptors, e.g., BF₃
Lewis

Acids and Bases

Model	Acid	Base
Arrhenius	H ⁺ produce	OH ⁻ produce
Brønsted- Lowry	H ⁺ donor	H ⁺ acceptor
Lewis	electron-pair acceptor	electron-pair donor

Conjugate Acids and Bases

When acids dissolve in water;

HA
$$(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + A^-(aq)$$

Acid Base Conjugate Conjugate
Acid Base

- The conjugate base is everything that remains of the acid molecule after a proton is lost.
- The conjugate acid is formed when the proton is transferred to the base.
- A conjugate acid—base pair consists of two substances related to each other by the donating and accepting of a single proton.
- The equation shown above contains two conjugate acid—base pairs: HA and A⁻ and H₂O and H₃O⁺.

HA
$$(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + A^-(aq)$$

Acid Base Conjugate Conjugate
Acid Base

- ♣ Notice the competition for the proton between the two bases H₂O and A⁻.
- ♣ If H₂O is a much stronger base than A⁻ (H₂O has a much greater affinity for H⁺ than does A⁻), the equilibrium position will be far to the right, i.e., most of the acid will dissolve (dissociated) at equilibrium.
- ♣ If A⁻ is a much stronger base than H₂O, the equilibrium position will lie far to the left (most of the acid will remain undissociated as HA at equilibrium).

Acid dissociation constant, K_a

$$HA (aq) + H_2O (l) \leftrightarrow H_3O^+(aq) + A^-(aq)$$
 $Acid$ Base Conjugate Conjugate Acid Base

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[H^+][A^-]}{[HA]}$$

■ In a dilute solution we assume that the concentration of liquid water remains essentially constant when an acid is dissolved. Thus the term [H₂O] is not included

Acid Strength

is measured by the equilibrium position of its dissociation (ionization) reaction

The weaker the acid, the stronger its conjugate base

Strong Acids

- 4 The dissociation equilibrium lies far to the right.
- Almost all the original HA is dissociated (ionized) at equilibrium.
- Dissociation produces a weak conjugate base that has a low affinity for protons (much weaker base than water).

Weak Acids

- ♣ The dissociation equilibrium lies far to the left (i.e., very small extent of dissociation).
- Almost all the original HA remains undissociated (not inozied) at equilibrium.
- ♣ The dissociation produces a strong conjugate base that is much stronger base than water.

Acid Strength: Examples

Strong Acids

- sulfuric acid [H₂SO₄(aq)],
- hydrochloric acid [HCl(aq)],
- nitric acid [HNO₃(aq)],
- perchloric acid [HClO₄(aq)].

Weak Acids

- \blacksquare phosphoric acid (H₃PO₄),
- nitrous acid (HNO₂),
- hypochlorous acid (HOCl),
- acetic acid (CH₃COOH),
- benzoic acid (C₆H₅COOH).

K_a for common monoprotic Acids

Formula	Name	Value of K _a *	
HSO ₄	Hydrogen sulfate ion	1.2×10^{-2}	1
$HClO_2$	Chlorous acid	1.2×10^{-2}	- E
$HC_2H_2ClO_2$	Monochloracetic acid	1.35×10^{-3}	gu
HF	Hydrofluoric acid	7.2×10^{-4}	stre
HNO_2	Nitrous acid	4.0×10^{-4}	acid strength
$HC_2H_3O_2$	Acetic acid	1.8×10^{-5}	
$[Al(H_2O)_6]^{3+}$	Hydrated aluminum(III) ion	1.4×10^{-5}	.El
HOCl	Hypochlorous acid	3.5×10^{-8}	as
HCN	Hydrocyanic acid	6.2×10^{-10}	Increasing
NH_4^+	Ammonium ion	5.6×10^{-10}	
HOC ₆ H ₅	Phenol	1.6×10^{-10}	ı

Exercise

- Arrange the following species according to their strengths as bases:
 - \blacksquare H₂O, F⁻, Cl⁻, NO₂⁻, and CN⁻.

Solution

Remember that water is a stronger base than the conjugate base of a strong acid but a weaker base than the conjugate base of a weak acid. This leads to the following order:

 $Cl^- < H_2O < conjugate bases of weak acids Weakest bases <math>\rightarrow \rightarrow \rightarrow$ Strongest bases

Recognize that the strength of an acid is inversely related to the strength of its conjugate base.

$$K_a$$
 for HF > K_a for HNO₂ > K_a for HCN

The combined order of increasing base strength is

$$Cl^- < H_2O < F^- < NO_2^- < CN^-$$

Water as an Acid and a Base

Amphoteric substances behave as an acid or as a base.

Hoi:
$$+$$
 Hoi: $=$ $\begin{bmatrix} \vdots \\ H \end{bmatrix}^{+} + \begin{bmatrix} \vdots \\ H \end{bmatrix}^{-}$ Autoionization

$$K_W = [H_3O^+][OH^-] = [H^+][OH^-]$$

K_w: the ion-product constant (**dissociation constant** of water). Experiment shows that at 25°C in pure water,

$$[H^+] = [OH^-] = 1.0 \times 10^{-7} M$$

$$K_W = [H^+][OH^-] =$$

 $(1.0 \times 10^{-7}) \times (1.0 \times 10^{-7})$
 $= 1.0 \times 10^{-14}$

Exercise

■ Calculate [H⁺] or [OH⁻] as required for each of the following solutions at 25°C, and state whether the solution is neutral, acidic, or basic.

a)
$$1.0 \times 10^{-5}$$
 M OH⁻, b) 1.0×10^{-7} M OH⁻, c) 10.0 M H⁺

Solution

$$[H^+] = \frac{K_W}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9} M$$

$$[H^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}} = 1.0 \times 10^{-7} M$$

Neutral

$$[OH^{-}] = \frac{1.0 \times 10^{-14}}{[H^{+}]} = \frac{1.0 \times 10^{-14}}{10.0}$$
$$= 1.0 \times 10^{-15} M$$

Acidic

pH Scale

$$pK = -\log K$$

$$pH = -\log[H^+]$$

$$pOH = -\log[OH^{-}]$$

$$pH + pOH = 14$$

At 25 °C

$$[H^+] = 1.0 \times 10^{-7} M$$

$$pH = -(-7) = 7$$

Exercise

Calculate pH and pOH for 1.0 × 10⁻³ M OH⁻ solution at 25°C?

Solution

$$[H^+] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}} = 1.0 \times 10^{-11} M$$

$$pH = -\log(1.0 \times 10^{-11}) = 11.00$$

$$pOH = -log(1.0 \times 10^{-3}) = 14.00 - 11.00$$

= 3.00

pH of Strong Acid Solutions

Exercise

Calculate the pH of 1.0 M HCl?

Solution

Find major species in solution:

H⁺, Cl⁻, and H₂O

Major species that can produce H⁺ are:

✓ the dissociation of HCl

 $HCl \rightarrow H^+ + Cl^-$

✓ Autoionization of H₂O

 $H_2O \leftrightarrow H^+ + OH^-$

■ In pure H_2O at 25 °C, $[H^+]=10^{-7}$ M.

■ In 1.0 M HCl solution, water will produce even less than 10⁻⁷ M H⁺ (Le Châtelier's principle) (can be ignored compared to 1.0 M H⁺ from 1.0 M HCl).

$$pH = -\log[H^+] = -\log(1.0) = 0$$

Exercise

Lalculate the pH of 1.0×10^{-10} M HNO₃?

Solution

Find major species in solution:

 H^+ , NO_3^- , and H_2O

- Major species that can produce H⁺ are:
 - ✓ the dissociation of HNO₃
 - ✓ Autoionization of H₂O
- In pure H_2O at 25 °C, $[H^+]=10^{-7}$ M.
- In 1.0×10^{-10} M HNO₃ solution, the amount of HNO₃ in solution is so small that it has **no effect**; the only major species is H₂O.
- Thus the pH will be that of pure water, or pH = 7.00.

pH of Weak Acid Solutions

Exercise

• Calculate the pH of a 1.00 M HF soln. $(K_a = 7.2 \times 10^{-4})$?

Solution

Major species in solution: HF and H₂O

Major species that can produce H⁺ are:

✓ Dissociation of HF

$$HF \leftrightarrow H^{+} + F^{-} K_{a} = 7.2 \times 10^{-4}$$

$$K_a = \frac{[H^+][F^-]}{[HF]} = 7.2 \times 10^{-4}$$

$$H_2O \leftrightarrow H^+ + OH^- \quad K_w = 1.0 \times 10^{-14}$$

Compare K_a for HF and K_w for H₂O,

♣ HF, although weak, is still a much stronger acid than water. Thus we will assume that HF will be the dominant source of H⁺. We will ignore the tiny contribution by water.

Before dissociation of HF,

$$[HF]_0 = 1.0M,$$
 $[F^-]_0 = 0,$ $[H^+]_0 = 10^{-7} \approx 0$

Assume to reach equilibrium, $x \mod/L$ HF will dissociate to produce $x \mod/L$ H+ and $x \mod/L$ F-.

Equilibrium concentrations can be defined in terms of x:

$$[HF] = [HF]_0 - x = 1.0 - x,$$

$$[F^-] = [F^-]_0 + x = 0 + x = x,$$

$$[H^+] = [H^+]_0 + x \approx 0 + x = x$$

As x is very small compared to 1.0, $1.0-x \approx 1.0$

$$K_{a} = 7.2 \times 10^{-4} = \frac{[H^{+}][F^{-}]}{[HF]} = \frac{(x)(x)}{1.0 - x}$$
$$x^{2} \approx (7.2 \times 10^{-4})(1.0)$$
$$x \approx \sqrt{7.2 \times 10^{-4}} = 2.7 \times 10^{-2}$$

$$x = [H^+] = 2.7 \times 10^{-2} \text{mol/L}$$

 $pH = -\log[H^+] = -\log(2.7 \times 10^{-2}) = 1.57$

Solving a quadratic equation of the general form

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

pH of Weak Acid Mixtures

Exercise

Calculate the pH of a solution that contains 1.00 M HCN ($K_a = 6.2 \times 10^{-10}$) and 5.00 M HNO₂ ($K_a = 4.0 \times 10^{-4}$). Also calculate the concentration of cyanide ion (CN^-) in this solution at equilibrium?

Solution

Major species in solution:

HCN, HNO₂ and H₂O

Major species that can produce H⁺ are:

$$HCN \leftrightarrow H^{+} + CN^{-}$$
 $K_{a} = 6.2 \times 10^{-10}$
 $HNO_{2} \leftrightarrow H^{+} + NO_{2}^{-}$ $K_{a} = 4.0 \times 10^{-4}$
 $H_{2}O \leftrightarrow H^{+} + OH^{-}$ $K_{w} = 1.0 \times 10^{-14}$

Compare K_a for HCN, HNO₂ and K_w for H₂O,

HNO₂, although weak, is still a much stronger acid than HCN and water. Thus we will assume that HNO₂ will be the dominant source of H⁺.

$$K_a = 4.0 \times 10^{-4} = \frac{[H^+][NO_2^-]}{[HNO_2]}$$

Initial Concentration (mol/L)	\rightarrow	Equilibrium Concentration (mol/L)
$[HNO_2]_0 = 5.00$	X mol/L	$[HNO_2] = 5.00-x$
$[NO_2^{-}]_0 = 0$	HNO ₂	$[NO_2^{-}]_0 = x$
$[H^{+}]_{0} = \approx 0$	dissociates	$[H^+]_0 = \approx x$

$$HNO_2 \leftrightarrow H^+ + NO_2^-$$

$$K_a = 4.0 \times 10^{-4} = \frac{[H^+][NO_2^-]}{[HNO_2]} = \frac{(x)(x)}{5.0 - x} \approx \frac{x^2}{5.0}$$

 $x = 4.5 \times 10^{-2} = [H^+]$ pH = 1.35

Calculation of equilibrium [CN⁻]:

$$HCN \leftrightarrow H^{+} + CN^{-} \qquad K_{a} = 6.2 \times 10^{-10}$$
 $K_{a} = 6.2 \times 10^{-10} = \frac{[H^{+}][CN^{-}]}{[HCN]}$

- There is only one kind of H⁺ in this solution. It does not matter from which acid the H ⁺ ions originate. $[H^+]=4.5\times 10^{-2} \text{ M}$
- Since K_a for HCN is so small, a negligible amount of HCN will dissociate.

$$K_a = 6.2 \times 10^{-10} = \frac{[H^+][CN^-]}{[HCN]} = \frac{4.5 \times 10^{-2}[CN^-]}{1.00}$$

$$[CN^{-}] = 1.4 \times 10^{-8} \text{mol/L}$$

pH of Weak Acid Solutions

Generally

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{x \cdot x}{C - x} \approx \frac{x^2}{C} = \frac{[H^+]^2}{C}$$

$$[H^{+}]^{2} = K_{a}C$$
 $[H^{+}] = \sqrt{K_{a}C}$

Percent Dissociation

Percent dissociation
$$= \frac{\text{amount dissociated (mol/L)}}{\text{initial concentration (mol/L)}} \times 100\%$$

In a 1.00 M solution of HF, $[H^+]=2.7\times10^{-2}$ M. To reach equilibrium, 2.7×10^{-2} mol/L of the original 1.00 M HF dissociates, so

Percent dissociation =
$$\frac{2.7 \times 10^{-2} \text{mol/L}}{1.00 \text{ mol/L}} \times 100 = 2.7 \%$$

For a given weak acid, the percent dissociation increases as the acid becomes more dilute.

Exercise

The pH of a 0.050 M weak acid is 3.00. What is the percentage ionization?

Solution

$$pH = 3.00 = -\log[H^+]$$

 $[H^+] = 0.001 \text{ mol/L}$

Percent dissociation =
$$\frac{\text{amount dissociated (mol/L)}}{\text{initial concentration (mol/L)}} \times 100 \%$$

$$= \frac{0.001 \text{ (mol/L)}}{0.050 \text{ (mol/L)}} \times 100 = 2.0 \%$$

HOMEWORKS

♣ Calculate the percent dissociation of acetic acid $(K_a = 1.8 \times 10^{-5})$ in 1.00 and 0.100 M $HC_2H_3O_2$?

♣ Lactic acid (HC₃H₅O₃) is a waste product that accumulates in muscle tissue during exertion, leading to pain and a feeling of fatigue. In a 0.100 M aqueous solution, lactic acid is 3.7% dissociated. Calculate the value of K_a for this acid?

Bases

Strong Bases

dissociating completely when dissolved in aqueous solution, e.g., sodium hydroxide (NaOH) and potassium hydroxide (KOH).

$$NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

Virtually no undissociated NaOH left. Thus a 1.0 M NaOH solution really contains 1.0 M Na⁺ and 1.0 M OH⁻.

Exercise

■ Calculate the pH of a 5.0 × 10⁻² M NaOH solution?

Solution

Major species in solution: Na⁺, OH⁻, H₂O

Although autoionization of water also produces OH-ions, the pH will be dominated by the OH-ions from the dissolved NaOH.

$$[OH^{-}] = 5.0 \times 10^{-2} \text{mol/L}$$

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-2}} = 2.0 \times 10^{-13} \text{mol/L}$$

$$pH = 12.70$$

Note that this is a basic solution for which

$$[OH^{-}] > [H^{+}]$$
 and pH > 7.0

The added OH⁻ from NaOH has shifted the water autoionization equilibrium to left, significantly lowering [H⁺] compared with that in pure water.

$$H_2O \leftrightarrow H^+ + OH^- \quad K_w = 1.0 \times 10^{-14}$$

Bases having no OH⁻

Many bases do not contain the hydroxide ion.

♣ However, when dissolved in water [OH⁻] increases because of their reaction with water.

$$B (aq) + H_2O (l) \leftrightarrow BH^+(aq) + OH^-(aq)$$

Base Acid Conjugate Conjugate
Acid Base

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

$$B(aq) + H_2O(l) \leftrightarrow BH^+(aq) + OH^-(aq)$$

Base Acid Conjugate Conjugate

Acid Base

Note the competition between the weak base, B, and OH⁻, which is a very strong base, for H⁺ ion. Thus their K_b values tend to be small.

■ Calculate the pH for a 15.0 M solution of NH₃ ($K_b = 1.8 \times 10^{-5}$)?

Solution

Major species in solution: NH_3 and H_2O (as K_b is very small)

Major species that can produce OH⁻ are:

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^- \qquad K_b = 1.8 \times 10^{-5}$$
 $H_2O \leftrightarrow H^+ + OH^- \qquad K_w = 1.0 \times 10^{-14}$

The contribution from water can be neglected, since

$$K_b = 1.8 \times 10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

>>> K_w

Initial Concentration (mol/L)

Equilibrium Concentration (mol/L)

$$[NH_3]_0 = 15.0$$

 $[NH_4^+]_0 = 0$
 $[OH^-]_0 \approx 0$

$$[NH_3] = 15.0 - x$$

 $[NH_4^+] = x$
 $[OH^-] = x$

$$K_{\rm b} = 1.8 \times 10^{-5} = \frac{[{\rm NH_4}^+][{\rm OH}^-]}{[{\rm NH_3}]} = \frac{(x)(x)}{15.0 - x} \approx \frac{x^2}{15.0}$$

$$x \approx 1.6 \times 10^{-2}$$

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.6 \times 10^{-2}} = 6.3 \times 10^{-13} M$$

$$pH = -log(6.3 \times 10^{-13}) = 12.20$$

Weak Bases_examples

TABLE 14.3) Values of K _b for Some Common Weak Bases				
Name	Formula	Conjugate Acid	K _b	
Ammonia	NH_3	NH ₄ ⁺	$1.8 \times 10^{-}$	
Methylamine	CH_3NH_2	CH ₃ NH ₃ ⁺	4.38×10^{-6}	
Ethylamine	$C_2H_5NH_2$	$C_2H_5NH_3^+$	$5.6 \times 10^{-}$	
Aniline	$C_6H_5NH_2$	$C_6H_5NH_3^+$	$3.8 \times 10^{-}$	
Pyridine	C_5H_5N	$C_5H_5NH^+$	1.7×10^{-1}	

Calculate $[H_3O^+]$, $[OH^-]$, and $[Ba^{2+}]$ in a 50.0 mL sample of 0.010 M $Ba(OH)_2$?

Solution

Ba(OH)₂ is considered the sole source of OH⁻

$$Ba(OH)_2 \rightarrow Ba^{2+} + 2 OH^-$$

$$[Ba^{+}] = 0.010 \text{ M}$$
 $[OH^{-}] = 2 [Ba^{+}] = 0.020 \text{ M}$

$$K_{W} = [H_{3}O^{+}][OH^{-}] = [H_{3}O^{+}](0.020) = 1.0 \times 10^{-14}$$

$$[H_3O^+] = 5.0 \times 10^{-13} M$$

pH of Weak Bases Solutions

Generally

$$K_b = \frac{[B^+][OH^-]}{[BOH]} = \frac{x \cdot x}{C - x} \approx \frac{x^2}{C} = \frac{[OH^-]^2}{C}$$

$$[OH^{-}]^{2} = K_{b}C$$
 $[OH^{-}] = \sqrt{K_{b}C}$
 $pOH = -\log[OH^{-}]$ $pH + pOH = 14$

The pH of a Polyprotic Acid

Sulfuric acid is unique among the common acids in that it is a strong acid in its first dissociation step and a weak acid in its second step:

$$H_2SO_4 \rightarrow H^+ + HSO_4^- \quad K_{a_1} = \text{very large}$$

 $HSO_4^- \leftrightarrow H^+ + SO_4^{2-} \quad K_{a_2} = 1.2 \times 10^{-2}$

Calculate the pH of a 1.0 M H_2SO_4 solution.

Solution

Major species in solution: H^+ , HSO_4^- , and H_2O

 $[H^+] = 1.0 + x$ (obtained from the dissociation of HSO_4^-)

calculate x

$$K_{a_2} = 1.2 \times 10^{-2} = \frac{[H^+][SO_4^{2-}]}{[HSO_4^-]}$$

Note that $[H^+]_0 \neq 0$, as it usually is for a weak acid, because the first dissociation step has already occurred.

$$K_{a_2} = 1.2 \times 10^{-2} = \frac{[H^+][SO_4^{2-}]}{[HSO_4^-]} = \frac{(1.0 + x)(x)}{1.0 - x} \approx \frac{(1.0)(x)}{1.0} \approx x$$

$$[H^+] = 1.0 \text{ M} \qquad \text{pH} = 0.00$$

$$[H^+] = 1.0 M + x = 1.0M + 1.2 \times 10^{-2} M \approx 1.0 M$$

Dissociation of HSO₄ does not contribute to [H⁺]

(H) Calculate the pH of a 1.0 x 10^{-2} M H₂SO₄ solution ?

Acid-Base Properties Salts

Salts Producing Neutral Solutions

- When a salt (ionic compound) dissolves in water, it breaks up into its ions, which move independently, at least in dilute solutions.
- Under certain conditions, these ions can behave as acids or bases.
- Salts that consist of the cations of strong bases (K⁺, Na⁺) and the anions of strong acids (Cl⁻, NO₃⁻) have no effect on [H⁺] when dissolved in water
- Aqueous solutions of salts such as KCl, NaCl, NaNO₃, and KNO₃ are neutral (have a pH of 7).

Salts Producing Basic Solutions

- Salts whose cations have neutral properties (such as K⁺, Na⁺) and whose anions are the conjugate bases of weak acids always produce basic aqueous solutions.
- The pH of aqueous solution of sodium acetate $(NaC_2H_3O_2)$ is determined by the $C_2H_3O_2^-$ ion (strong conjugate base of acetic acid)

$$C_2H_3O_2^-(aq) + H_2O(l) \leftrightarrow HC_2H_3O_2(aq) + OH^-(aq)$$

$$K_b = \frac{[H C_2 H_3 O_2][OH^-]}{[C_2 H_3 O_2^-]}$$

What is the relationship between K_b and K_a of acetic acid?

$$K_a \times K_b = \frac{[H^+][C_2H_3O_2^-]}{[H C_2H_3O_2]} \times \frac{[H C_2H_3O_2][OH^-]}{[C_2H_3O_2^-]}$$

$$= [H^+] \times [OH^-] = 1.0 \times 10^{-14} = K_w$$

■ Calculate the pH of a 0.30 M NaF solution? The K_a value for HF is 7.2 × 10^{-4} .

Solution

Major species in solution Na⁺, F⁻, and H₂O

Since HF is a weak acid, the F⁻ ion must have a significant affinity for protons, and the dominant reaction will be

$$F^{-}(aq) + H_2O(l) \leftrightarrow HF(aq) + OH^{-}(aq)$$

$$K_b = \frac{[HF][OH^-]}{[F^-]} = \frac{K_w}{K_a(HF)} = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-4}} = 1.4 \times 10^{-11}$$

$$F^{-}(aq) + H_2O(l) \leftrightarrow HF(aq) + OH^{-}(aq)$$

Initial 0.30
$$-$$
 0 ≈ 0
Change $-x$ $+x$ $+x$
Eq. $0.30-x$ x

$$K_b = 1.4 \times 10^{-11} = \frac{[HF][OH^-]}{[F^-]} = \frac{(x)(x)}{0.3 - x} \approx \frac{x^2}{0.3}$$

$$x \approx 2.0 \times 10^{-6} = [OH^{-}]$$
 pOH = 5.69

$$pH = 14.00 - 5.69 = 8.31$$

As expected, the solution is basic

Salts Producing Acidic Solutions

Salts whose anion is a weak base (Cl^- , NO_3^-) and whose cation is a conjugate acid of a weak base (such as NH_4^+) produce acidic solutions

Exercise

■ Calculate the pH of a 0.10 M NH_4Cl solution. The K_b value for NH_3 is 1.8×10^{-5} .

Solution

Major species in solution NH_4^+ , Cl^- , and H_2O both NH_4^+ and H_2O can produce H^+ . The dissociation reaction for the NH_4^+ ion is

$$NH_4^+ \leftrightarrow NH_3 + H^+$$

$$K_a = \frac{[NH_3][H^{+}]}{[NH_4^{+}]}$$

$$K_a(\text{for NH}_4^+) = \frac{K_w}{K_b(\text{for NH}_3)} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

 NH_4^+ is a very WA (see K_a) but still stronger than H_2O . Hence, it will dominate in the production of H^+ .

$$K_a = 5.6 \times 10^{-10} = \frac{[H^+][NH_3]}{[NH_4^+]} = \frac{(x)(x)}{0.10 - x} \approx \frac{x^2}{0.10}$$

 $x \approx 7.5 \times 10^{-6} = [H^+]$ $pH = 5.13$

[H⁺] pH = 5.13 As expected, acidic solution

Salts whose cations and anions influence pH

• We can predict whether the solution will be basic, acidic, or neutral by comparing the K_a value for the acidic ion with the K_b value for the basic ion.

$$K_a > K_b$$
 pH < 7 (acidic)
 $K_a < K_b$ pH > 7 (basic)
 $K_a = K_b$ pH = 7 (neutral)

Solution

Predict whether an aqueous solution of $NH_4C_2H_3O_2$ salt will be acidic, basic, or neutral.

Major species in soln: NH₄⁺ and C₂H₃O₂⁻

$$K_a \text{ for } NH_4^+ = 5.6 \times 10^{-10}$$

$$K_b$$
 for $C_2H_3O_2^- = 5.6 \times 10^{-10}$

$$K_a \text{ for } NH_4^+ = K_b \text{ for } C_2H_3O_2^-$$

Neutral solution pH = 7

Solutions of Acids Containing a Common Ion

Consider a solution containing a weak acid 1.0 M HF (K_a = 7.2 × 10⁻⁴) and 1.0 M NaF. How does F ⁻ influence the dissociation of HF?

Major species in soln: Na⁺, F⁻, HF, and H₂O

The common ion in this solution is F⁻.

HF(aq)
$$\leftrightarrow$$
 H⁺(aq) + F⁻(aq)

NaF(s) $\xrightarrow{H_2O}$ Na⁺(aq) + F⁻(aq)

Le Châtelier's

Common ion effect makes a solution of NaF and HF less acidic than a solution of HF alone.

Solutions of Bases Containing a Common Ion

Consider the addition of solid NH_4Cl to a 1.0 M NH_3 solution.

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(aq) + Cl^-(aq)$$

$$NH_3(aq) + H_2O \leftrightarrow NH_4^+(aq) + OH^-(aq)$$
Le Châtelier's

The position of the ammonia—water equilibrium shifts to the left reducing the equilibrium concentration of OH⁻ ions.

Polyprotic acids

Common ion effect is important in solutions of polyprotic acids (e.g., H₂SO₄, H₃PO₄).

♣ The production of H⁺ by the first dissociation step greatly inhibits the succeeding dissociation steps, which also produce protons "common ion"

$$H_2SO_4 \rightarrow H^+ + HSO_4^- K_{a_1} = very large$$

 $HSO_4^- \leftrightarrow H^+ + SO_4^{2-} K_{a_2} = 1.2 \times 10^{-2}$

The equilibrium concentration of H⁺ in a 1.0 M HF solution is 2.7×10^{-2} M, and the percent dissociation of HF is 2.7%. Calculate [H⁺] and the percent dissociation of HF in a solution containing 1.0 M HF (K_a = 7.2×10^{-4}) and 1.0 M NaF.

Solution

Major species in soln. Na⁺, F ⁻, HF, H₂O

- ♣ Na⁺ ions have neither acidic nor basic properties
- + H₂O is a very weak acid (or base).
- **♣** Important species are HF and F⁻.

$$HF(aq) \leftrightarrow H^+(aq) + F^-(aq)$$

$$K_a = \frac{[H^+][F^-]}{[HF]} = 7.2 \times 10^{-4}$$

Initial Conc. (mol/L)	Change (mol/L)	Eq. Conc. (mol/L)
[HF] ₀ = 1.0 From dissolved HF		[HF] = 1.0 - x
$[F^-]_0 = 1.0$ From dissolved NaF	x mol/L HF dissociates	$[F^{-}] = 1.0 + x$
$[H^+]_0 = 0$ Neglect contribution from H_2O		$[H^+]_0 = x$

$$K_a = 7.2 \times 10^{-4} = \frac{[H^+][F^-]}{[HF]} = \frac{(x)(1.0 + x)}{(1.0 - x)} \approx x = [H^+]$$

$$[H^+] = 7.2 \times 10^{-4} \Rightarrow pH = 3.14$$

The percent dissociation of HF in this solution is

$$\frac{[H^+]}{[HF]_0} \times 100 = \frac{7.2 \times 10^{-4} \text{M}}{1.0 \text{M}} \times 100 = 0.072\%$$

As expected, F⁻ ions inhibited the dissociation of HF and position of acid dissociation equilibrium is shifted to the left

Buffered Solution BS

 A BS is that resisting a change in its pH when either hydroxide ions or protons are added

 Buffered systems are especially important in living systems, which can survive only in a relatively narrow pH range.

■ For example, although human blood contains many buffering systems, the most important of these consists of a mixture of carbonic acid (0.0012 M) and bicarbonate ion (0.024 M). These concentrations produce a pH of 7.4 for normal blood.

Buffered Solutions

- Because our cells are so sensitive to pH, it is important that this pH value be maintained.
- When reactions occur in our bodies, such as the formation of lactic acid (HC₃H₅O₃) when our muscles are exerted, the buffering systems must be capable of neutralizing the effects of this acid to maintain the pH at 7.4.
- A buffered solution may contain a WA and its salt (HF and NaF) or a WB and its salt (NH₃ and NH₄Cl).
- By choosing the appropriate components, a solution can be buffered at virtually any pH.

■ A buffered solution contains 0.50 M acetic acid $(HC_2H_3O_2, K_a=1.8\times 10^{-5})$ and 0.50 M sodium acetate $(NaC_2H_3O_2)$. Calculate the pH of this solution?

Solution

Major species in soln.

$$HC_2H_3O_2$$
, Na^+ , $C_2H_3O_2^-$, H_2O
Weak acid neutral base weak acid/base

$$H C_2 H_3 O_2(aq) \leftrightarrow H^+(aq) + C_2 H_3 O_2^-(aq)$$

$$K_a = 1.8 \times 10^{-5} = \frac{[H^+][C_2H_3O_2^-]}{[H C_2H_3O_2]}$$

$$[HC_2H_3O_2]_0 = 0.50$$

$$[C_2H_3O_2^-]_0 = 0.50$$

$$[H^+]_0 \approx 0$$

$$[HC_2H_3O_2]_0 = 0.50 - x$$

$$[C_2H_3O_2^-]_0 = 0.50 + x$$

$$[C_2H_3O_2^-]_0 = 0.50 + x$$

$$[H^+]_0 \approx 0$$

$$[HC_2H_3O_2]_0 = 0.50 - x$$

$$[C_2H_3O_2^-]_0 = 0.50 + x$$

$$[H^+]_0 \approx 0$$

$$[H^+$$

change with that which occurs when 0.010 mole of

solid NaOH is added to 1.0 L water?

Initial

Concentration (mol/L)

Equilibrium

Concentration (mol/L)

- ♣ Na⁺ ions have neither acidic nor basic properties
- ♣ NaOH will completely dissociate, so the major species in solution before any reaction occurs are $HC_2H_3O_2$, Na^+ , $C_2H_3O_2^-$, OH^- , and H_2O .

♣ The solution contains a relatively large amount of the very strong base OH⁻, which has a great affinity for H⁺.

♣ The best source of H^+ is $HC_2H_3O_2$, and the reaction that will occur is

$$OH^- + H C_2H_3O_2 \rightarrow H_2O + C_2H_3O_2^-$$

♣ Although acetic acid is a weak acid, the hydroxide ion is such a strong base that their reaction will proceed essentially to completion (until the OH⁻ ions are consumed).

- The best approach to this problem involves two distinct steps:
 - assume that the reaction goes to completion, and carry out the stoichiometric calculations, and then
 - carry out the equilibrium calculations.

Stoichiometry

Eqm.

After the reaction between OH^- and $HC_2H_3O_2$ is complete, the major species in solution are $HC_2H_3O_2$, Na^+ , $C_2H_3O_2^-$, and H_2O .

| H C₂H₃O₂
$$\leftrightarrow$$
 H⁺ + C₂H₃O₂⁻ |
Initial	0.49	0	0.51
Change	-x	+x	+x
Eq.	0.49-x	x	0.51+x
K_a = 1.8 × 10⁻⁵ = $\frac{[H^+][C_2H_3O_2^-]}{[H C_2H_3O_2]} = \frac{(x)(0.51 + x)}{(0.49 - x)}$			
$\approx \frac{(x)(0.51)}{(0.49)}$	$x = 1.7 \times 10^{-5} = [H^+]$		
\Rightarrow pH = 4.76			

The change in pH produced by the addition of 0.01 mole of OH⁻ to this buffered solution is then

Change in pH =
$$4.76 - 4.74 = +0.02$$

The pH increased by 0.02 pH units.

What does it happen if 0.01 mole of solid NaOH is added to 1.0 L water?

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12}$$

$$\Rightarrow pH = 12$$

Change in pH = 12 - 7 = +5

Buffering mechanism

Consider the addition of OH⁻ to a buffered solution containing relatively large quantities of a weak acid HA and its conjugate base A⁻. OH⁻ will be consumed immediately

$$HA + OH^- \rightarrow A^- + H_2O$$

pH will be justified by the equilibrium of HA dissociation:

$$K_a = \frac{[H^+][A^-]}{[H A]}$$

$$[H^+] = K_a \frac{[H A]}{[A^-]}$$

- The equilibrium concentration of H⁺, and thus pH, is determined by the ratio [HA]/[A[−]].
- When OH⁻ ions are added, HA is converted to A⁻, and the ratio [HA]/[A⁻] decreases.

■ If [HA] and [A⁻] originally very large compared to [OH⁻] added, the change in the [HA]/[A⁻] ratio will be small.

$$\frac{[\text{H A}]}{[\text{A}^-]} = \frac{0.50}{0.50} = 1.0$$
 Initially

$$\frac{[H A]}{[A^-]} = \frac{0.49}{0.51} = 0.96 \quad \text{after adding 0.01 M OH}^-$$

■ The change in [HA]/[A] ratio is very small. Thus [H⁺] and pH remain essentially constant.

The essence of buffering is that [HA] and [A⁻] are large compared with the amount of OH⁻ added

If H⁺ are added to a buffered solution of a weak acid and a salt of its conjugate base: $H^+ + A^- \rightarrow HA$

Henderson-Hasselbalch equation

It is used to calculate the pH of buffered solutions when the ratio [HA]/[A⁻] is known.

Exercise

■ Calculate [H⁺] in a buffered solution containing 0.10 M HF ($K_a = 7.2 \times 10^{-4}$) and 0.30 M NaF?

Solution

$$[H^+] = K_a \frac{[HA]}{[A^-]} = (7.2 \times 10^{-4}) \times \frac{0.10}{0.30} = 2.4 \times 10^{-4} \text{mol/L}$$

$$[H^+] = K_a \frac{[HA]}{[A^-]}$$

$$-\log[H^{+}] = -\log(K_{a}) - \log\frac{[HA]}{[A^{-}]}$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

$$pH = pK_a + log \frac{[base]}{[acid]}$$

For a particular buffering system (conjugate acid—base pair), all solutions that have the same ratio [A⁻]/[HA] will have the same pH.

System

$[A^-]/[HA]$

5.0	M	$HC_2H_3O_2$ and
3.0	M	$NaC_2H_3O_2$

$$\frac{3.0 M}{5.0 M} = 0.60$$

$$\frac{0.030 M}{0.050 M} = 0.60$$

$$pH = pK_a + log \frac{[C_2H_3O_2^{-}]}{[H C_2H_3O_2]}$$

$$= 4.74 + \log(0.60) = 4.74 - 0.22 = 4.52$$

Exercise

■ Calculate the pH of a solution containing 0.75 M lactic acid ($K_a = 1.4 \times 10^{-4}$) and 0.25 M sodium lactate?

Solution

$$pH = pK_a + log \frac{[C_3H_5O_3^-]}{[H C_3H_5O_3]}$$

$$= 3.85 + \log\left(\frac{0.25}{0.75}\right) = 3.38$$

Buffering_Bases

 Buffered solutions also can be formed from a weak base and the corresponding conjugate acid.

Weak base B reacts with any H⁺ added:

$$B + H^+ \rightarrow BH^+$$

Conjugate acid BH⁺ reacts with any added OH⁻:

$$BH^+ + OH^- \rightarrow B + H_2O$$

Exercise

• Calculate the pH of a buffered solution containing 0.25 M NH₃ ($K_b = 1.8 \times 10^{-5}$) and 0.40 M NH₄Cl?

Solution

Major species in soln.

 NH_3 NH_4^+ $CI^ H_2O$ Weak base from NH_4CI weak acid/base

As Cl⁻ is a WB and water is a WA or WB, the important equilibrium is

$$NH_3(aq) + H_2O(l) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

Base Acid Conjugate Conjugate
Acid Base

$$K_b = 1.8 \times 10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

Initial 0.25 − 0.40 ≈0

Change −x − +x +x

Eq. 0.25−x − 0.40+x x

$$K_{b} = 1.8 \times 10^{-5} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = \frac{(0.40 + x)(x)}{(0.25 - x)}$$

$$\approx \frac{(0.40)(x)}{x} = 1.1 \times 10^{-5} = [OH^{-}]$$

 \Rightarrow pOH = 4.95

$$\Rightarrow$$
 pH = 14 - 4.95 = 9.05

Alternatively

Using the dissociation equilibrium for NH_4^+

$$NH_4^+ \leftrightarrow NH_3 + H^+$$

$$K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

Henderson-Hasselbalch

$$pH = pK_a + log \frac{[base]}{[acid]}$$

$$pH = 9.25 + log \frac{0.25}{0.4} = 9.25 - 0.20 = 9.05$$

Adding a SA to a BS

Exercise

■ Calculate the pH of the solution that results when 0.10 mole of gaseous HCl is added to 1.0 L of a buffered solution containing 0.25 M NH₃ ($K_b = 1.8 \times 10^{-5}$) and 0.40 M NH₄Cl?

Solution

Major species in soln.

 NH_3 NH_4^+ $Cl^ H^+$ H_2O Weak base from HCl WA/WB

- ✓ H⁺ will not react with Cl⁻ to form HCl.
- ✓ NH₃ will react with H⁺ to form NH₄ ⁺

$$NH_3 + H^+ \leftrightarrow NH_4^+$$

This Rx is assumed to go essentially to completion. Hence, we will do the stoichiometry calculations before the equilibrium calculations.

Stoichiometry

	NH_3	+ H ⁺ -	\rightarrow NH ₄ ⁺
BR	1L × 0.25 M = 0.25 mol	0.1 mol Limiting	1L × 0.4 M = 0.4 mol
AR	0.25–0.1 =0.15 mol	0	0.4+0.1 =0.5 mol

$$NH_4^+$$
 $CI^ H_2O$

$$[NH_3]_0 = \frac{0.15 \text{ mol}}{1.0 \text{ L}} = 0.15 \text{ M}$$

$$[NH_4^+]_0 = \frac{0.5 \text{ mol}}{1.0 \text{ L}} = 0.5 \text{ M}$$

Eqm.

NH3

$$[NH_3] \approx [NH_3]_0 = 0.15 M$$

$$[NH_4^+] \approx [NH_4^+]_0 = 0.5 M$$

$$pH = pK_a + log \frac{[NH_3]}{[NH_4^+]} = 9.25 + log \frac{0.15}{0.5} = 8.73$$

$$=9.25 + \log \frac{0.15}{0.5} = 8.73$$

Adding HCl decreases slightly pH as expected in a BS

Buffering Capacity_BC

BC of a BS represents the amount of H⁺ or OH⁻ that BS absorb without a significant change in pH.

A BS containing large concentrations of buffering components will have a large BC.

♣ The pH of a BS is related to the [A⁻]/[HA] ratio.

BC is determined by the magnitudes of [HA] and [Δ-]

Exercise

Calculate the change in pH that occurs when 0.010 mole of gaseous HCl is added to 1.0 L of each of the following solutions (K_a for acetic acid = 1.8×10^{-5}):

- Solution A: 5.00 M HC₂H₃O₂ and 5.00 M NaC₂H₃O₂
- Solution B: 0.050 M $HC_2H_3O_2$ and 0.050 M $NaC_2H_3O_2$

Solution

 $[C_2H_3O_2^{-1}] = [H C_2H_3O_2]$

$$pH = pK_a + log \frac{[C_2H_3O_2^-]}{[H C_2H_3O_2]}$$

$$pH = pK_a = -\log(1.8 \times 10^{-5}) = 4.74$$

After adding HCl

Major species in soln. before reaction

$$HC_2H_3O_2$$
 Na^+ $C_2H_3O_2^ H^+$ $CI^ H_2O$ from HCI

- **♣** H⁺ will not react with Cl⁻ to form HCl.
- C₂H₃O₂ will react with H⁺ to form HC₂H₃O₂

$$H^+ + C_2H_3O_2^- \to HC_2H_3O_2$$

- Because $HC_2H_3O_2$ is a weak acid, the Rx is assumed to go to **completion**.
- Hence, we will do the stoichiometry calculations before the equilibrium calculations.

Stoichiometry Soln A

0.01 M

 $pH = 4.74 + \log \frac{1.55}{5.01}$

 H^+

BR

AR 0 4.99 5.01 M
$$pH = pK_a + log \frac{[C_2H_3O_2^-]}{[H C_2H_3O_2]}$$

4.99

 $+ C_2 H_3 O_2^- \rightarrow$

5 M

 $HC_2H_3O_2$

5 M

4.74 - 0.0017 = 4.74

No Change in pH

Stoichiometry_Soln B

$$pH = pK_a + log \frac{[C_2H_3O_2^{-1}]}{[H C_2H_3O_2]}$$

$$pH = 4.74 + log \frac{0.04}{0.06} = 4.74 - 0.18 = 4.56$$

BC decreased

Change in $[C_2H_3O_2^-]/[HC_2H_3O_2]$

If 0.01 mol H⁺ is added to 1.0 L of each solution

Soln.	$ \left(\frac{\left[C_{2}H_{3}O_{2}^{-}\right]}{\left[H\;C_{2}H_{3}O_{2}\right]}\right)_{\text{orig}} $	$\left(\frac{\left[C_2H_3O_2^{-1}\right]}{\left[HC_2H_3O_2\right]}\right)_{new}$	Change	Change %
Α	$\frac{1.0}{1.0} = 1.0$	$\frac{0.99}{1.01} = 0.98$	1.00→ 0.98	2.0 %
В	$\frac{1.0}{0.01} = 100$	$\frac{0.99}{0.02} = 49.5$	100→ 49.5	50.5 %

The **optimal buffering**, most resistant to change when H⁺ or OH⁻ are added to the buffered solution, occurs when **[HA]** is equal to **[A⁻]**.

If [A]/[HA] = 1

$$pH = pK_a + log \frac{[A^-]}{[HA]} = pK_a + log(1) = pK_a$$

pK_a of WA in the buffer should be as close as possible to the desired pH.

Exercise

A chemist needs a solution buffered at pH 4.30 and can choose from the following acids (and their sodium salts):

```
a. chloroacetic acid (K_a = 1.35 \times 10^{-3})
```

- b. propanoic acid ($K_a = 1.3 \times 10^{-5}$)
- c. benzoic acid ($K_a = 6.4 \times 10^{-5}$)
- d. hypochlorous acid ($K_a = 3.5 \times 10^{-8}$)

Calculate the ratio [HA]/[A] required for each system to yield a pH of 4.30. Which system will work best?

Solution

A pH of 4.30 corresponds to

$$[H^+] = K_a \frac{[HA]}{[A^-]}$$

$$[H^+] = 10^{-4.30} = antilog (-4.30) = 5.0 \times 10^{-5} M$$

	Acid	$[H^+] = K_a \frac{[HA]}{[A^-]}$	$\frac{[HA]}{[A^-]}$
a.	chloroacetic acid	5.0×10^{-5} $= 1.35 \times 10^{-3} \frac{[\text{HA}]}{[\text{A}^{-}]}$	3.7×10^{-2}
b.	propanoic acid	5.0×10^{-5} $= 1.3 \times 10^{-5} \frac{[\text{HA}]}{[\text{A}^-]}$	3.8
C.	benzoic ac	5.0×10^{-5} = $6.4 \times 10^{-5} \frac{[HA]}{[A^-]}$	0.78
d.	hypochlorous acid	5.0×10^{-5} = $3.5 \times 10^{-8} \frac{[HA]}{[A^-]}$	1.4×10^3

As [HA]/[A-] for benzoic acid is closest to 1, the system of benzoic acid and its sodium salt will be the best choice.

The optimal buffering system has a **pK**_a value close to the desired pH. (The pK_a for benzoic acid is 4.19)

and of Course

Good Tuck