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  Classification Revisited

Binary Classification can be view as the task of Separating classes in 
feature spaces. For a hypothesis

Decision Boundary θT x>0

θT x<0

Predicting 1 (the green points)

θT x=0 Predicting 0 (the red points)

In other words, Classification for 
any unseen point x is :

f(x) = sign (      )θT x

The goal of Classifier is to train a model that assigns a new unseen object into a specific 
category. It places the object above or below the separation hyper plane 

hθ ( x ) =θT x



Linear Separator

Classification is the process of categorizing the two classes with a hyper-
plane. Now How can we Identify the right right (best) hyper-plane

Scenario 1 AB

C

Identify the right 
hyper-plane

A hyper-plane A is correctly classifies the data points



Good vs Bad Classifiers

Classification is the process of categorizing the two classes with a hyper-
plane. Now How can we Identify the right right (best) hyper-plane?

Scenario 2 A
B

Identify the right 
hyper-plane

C D

We have 4 hyper-planes 
A, B,C, and D. All are 
separating the classes 
well 

Remember:The worth of a classifier is not in how well it separates the training 
data, but We want it eventually to classify unseen-data points. Given that, we 
want choose a hyper-plane that captures the general pattern in the training 
data, so there is a good chance it does well on the test data



Maximum Margin Classifier (MMC)

D

A,B, and C seem too close to the data points. Sure they appear in the training data 
perfectly,  but when they see a test point, there is a good chance that it would get the 
wrong class (miss-classified).

D stays as far a way as possible from both classes. By being right in the middle of 
the two classes, it is less “risky” to miss-classify the unseen data. And thus 
generalizes well on test data



Maximum Margin Classifier (MMC)

MMC try to find the best separator hyperplane. Here is a simple version of 
What MMC (as a kind of SVMs) do:

1. Find hyper-planes that correctly classify the training data.

2. Among all such  hyper-planes, pick the one that has the greatest distance 
to the points closest to it. D

WT x+b>0WT x+b<0

WT x+b=0



Essence of MMC

D

The closest points that identify this hyper-plane are knows as support vectors. The 
region they defined around the line is knows as the Margin. 

- 2M is the margin
- Circled points are called 
support vectors

M

- Only support vectors matter, other training examples are ignorable 
- Data that can be separated by a hyper-plane is known as Linearly separable data
- The hyper-plane that classifies the linear separable data  act as  a linear classifier

Optimization Problem

M=
1

‖w‖
Maximize

Subject to y i (w⋅x i+b )≥M

M

Minimize 

Subject to y i (w⋅x i+b )≥M

1
2
w⋅w

or



What IS Support vector Classifier (SVC)

SVC is a classifier formally defined by separating hyperplane 
A hyperplane is a subspace of one dimension less thank its ambient 
space. This means a hyperplane of two dimension space is one dimension 
separator (line). A hyperplane of three dimension space is two dimension 
separator (plane).
Elements above the hyperplane satisfy

2 D space separated by line (left). 3 D space separated by plane (right)

w t x+b> 0

W t x+b=0

Elements below the hyperplane satisfy w t x+b< 0 The weight vector W 
represents the orientation 
of the hyperplane and b 
represent the bias 



Allowing for Errors: SVC

We look at the easy case of perfectly linear separable data. But real-world 
data is typically messy and almost few instances of data a linear classifier 
can’t get right

Scenario 3

How can you find the 
right hyperplane ?

SVC has feature to ignore outliers and find the hyperplane that has  maximum 
margin. i.e SVC (hence SVM)is robust to outliers



Allowing for Errors: SVC

We look at the easy case of perfectly linear separable data. But real-world 
data is typically messy and almost few instances of data a linear classifier 
can’t get right

Scenario 4

Which one is the 
best ?

Will you maximize the margin and allow misclassified instance. Or will you 
choose to correctly classify with less margin ?

This is a trade-off

Soft margin Classifier



Allowing for Errors: SVC

How SVC let you handle this situation ? It allows you to specify how many 
errors you are willing to accept.

Providing a hyper parameter called ‘ C’ to your SVM. This allows to control 
the trade-off between:

A wide Margin
Correctly classify the training data

C is a non-negative “Tuning” parameter. If C=0, implies that no violation of 
the margin is possible ( in this case, we have MMC situation)

Usually in addition to  C, The SVC introduces a parameter     called slack 
variable to each data point x

i
. It allows the data points to be on the wrong 

side of the margin or hyperplane. 
∑
i=1

n

ϵ i≤C

If            , it states that the training point  x
i
 is on the correct side of the 

margin, for           means x
i 
on the wrong side of the margin.         Means x

i
 

on the wrong side of the hyperplane

ϵ i=0

ϵ i>0 ϵ i>1

ϵ i



Allowing for Errors: SVC

Example to separate the Data



Allowing for Errors: SVC

The first plot c=0.01 capture general trend better, although it suffers from 
low accuracy on the training data compared to higher value for C



Bias variance trade off again‐variance trade off again

Large C:

Small Margin

Allow for more violation of Margin

More Support Vectors

Less variance, more stable

High bias

Small C:

Large Margin

Less violation on training data

Low training error, less bias

Fewer support vectors

Higher variance

How do we Choose C in 
practice ?

Cross validation



Non-Linearly Separable Data

Scenario 5

We can’t have a linear Hyperplane between the two classes. How does 
SVM classify theses two Classes ?



Non-Linearly Separable Data

A lot if real-world data are non-linearly separable. Here an example XOR 
Data set.

If we use the SVC, it 
would give extremely 
poor performance. In the 
example, the accuracy 
almost 75 % on the 
training data



Support Vector Machines

Although the data is non-linearly separable, We have a good technique at 
finding  hyperplane using SVM by Extending a SVC is to allow non-linear 
decision boundary

How

Idea: Project the data into another 
dimensional space where it is 
linearly separable and then find 
the hyperplane in this new space



Support Vector Machines

Upgrade to a higher dimension

Data now is linearly 
separable by a hyperplane. 
The plane in 3D space  can 
separate the data

Transform data from 2D  space to 3D Space



Support Vector Machines

Project the hyperplane back to the original dimension

Non-linear separation 

When mapping the decision boundary back to the original space, the 
separating boundary is not a line anymore



SVMs

The shape of the separating boundary in the original space depends on 
the projection(the mapping function) in the projection space.



SVMs: Mapping to higher Dimension

Try to find a mapping function f that takes the input spaces to a higher 
dimension feature space

- f is a map from n-dimension to m-dimension. Usually m > n 

- instead of finding the non-linear separability  hyperplane in n-dimension, 
we try to find a hyperplane linearly in m- dimension

Minimize 

Subject to y i (w⋅x i )≥M

1
2
w⋅w Minimize 

Subject to y i ( f ( w )⋅f (x i ))≥M

1
2
f ( w )⋅f (w )

map

f :Rn
⇒ Rm

That is cool

But costly and need 
extra effort



SVMs: Kernel

In essence, SVMs are an extension of SVC that results from enlarging the 
features space through the use of functions known as Kernels

Let x, y  are n dimensional inputs. The kernel function K on x,y is the dot 
product on the mapping function f on x and y
- define: K(x,y)= f(x) . f(y)

Normally, we need to map each data point form the dimension n to 
dimensional m using f and apply SVC (dot product optimization) on the new 
dimension
We give an example to illustrate the power of 
kernel 

X=(x
1
,x

2
)  2D feature space. Let f be the 

mapping on 3D space
f ( x )=( x1,

2 x2
2 ,√2 x1 x2)

f :R2
⇒R3



The cost of mapping

To compute the projection (mapping)  we need to perform the following 
operation:
- to Get the new first dimension: 1 Multiplication
- second dimension: 1 Multiplication
- third dimension: 2 Multiplications
In all, 1+1+2= 4 Multiplications

X̂ i=( x i1
2 ,xi2

2 ,√2x i 1 x i2 )X i=( x i1 ,x i2 )

Since the most important operation of SVC is the dot product between any 
two data points, let see the cost of the dot product in the new dimension

X̂ i⋅X̂ j=X i1 X j1+X i2 X j2+X i3 X j3

To compute this dot product for point I and j, we need to compute their 
projection first,so that is 4+4 =8 Multiplications. The dot product needs 3 
multiplications and 2 additions. In all
8 (for projections) + 3(multiplications)+ 2 additions = 13 operations

Now, what if we use the kernel K (x i ,x j )= (x i⋅x j )
2



Kernel Trick

Let us expand the kernel function

K (x i ,x j )= (x i⋅x j )
2

= f ( x i )⋅f ( x j ) This is magic. The Kernel 
TrickHow many operation to compute equation (2) ?

2 multiplications+ 1 addition+ 1 for squaring the result = 4 operations

If we use the kernel function of the mapping, it would make  31%  reduction of 
of the operations that we calculated before. It look faster to use a kernel 
function to compute the dot products. We do not need even to map the data 
into the other dimension magic ;-)  

K (x i ,x j )= (xi⋅x j )
2 (1)

(x i 1 x j 1+xi2 x j 2)
2

= (2)

x i1
2 x j1

2 +x i2
2 x j2

2
+2 x i1 x i2 x j1 x j 2= (3)

( xi 1
2 ,x i2

2 ,√2 x i1 x i 2)⋅( x j 1
2 ,x j2

2 ,√2 x j 1 x j 2)= (4)



SVMs with Kernel

Some Popular Kernels

Polynomial Kernel

Radial Base Function Kernel

Linear Kernel

K ( x,y )= (xT y+1 )
d

K ( x,y )=exp (−γ‖x− y‖2)

K ( x,y )=xT y

A kernel function computes what the dot product would be if you had 
actually projected the data

A kernel Trick means a kernel function transforms the data into a higher 
dimensional feature space to make it possible to perform linear separation 
on the data.
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