

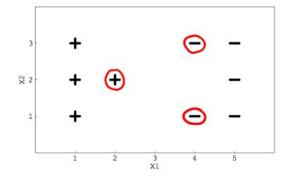
Cairo University Institute of Statistical Studies and Researches

Final Exam

Department of computer Science Course Name: Intelligent Systems Course Code: CS602 Instructor: Dr.Ammar Mohammed Data: 31 December 2017 Duration: 3 Hours Total Mark: 75

Note: Calculator is allowed.

Answer the following 5 Questions


Question: I (15 marks) Choose the best answer (1.5 point for each)

1- What is true about K-Mean Clustering?				
2. Bad initi	-	re to cluster center initia Poor convergence speed bad overall clustering		
The answer is:				
A) 1 and 3	B) 1 and 2	C) 2 and 3	D)1, 2 and 3	
2- For two runs of K-M A. Yes	lean clustering, is it e	· ·	stering results? 3. No	
3- The effectiveness of A) Selection of C) Soft Margin	Kernel	on: B) Kernel Parar D) All of the pro		
4- If you are using all features of a dataset and you achieved 100% accuracy on the training set, but 70% on validation set, what would expect from the model?				
A) Underfitting	1	B) Nothing, the model	is perfect	C) Overfitting
 5- What is/are true about kernel in SVM? 1. Kernel function map low dimensional data to high dimensional space 2. It's a similarity function 				
The answer is:				

A) 1 B) 2 C) 1 and 2 D) None of these

for the question 6 and 7:

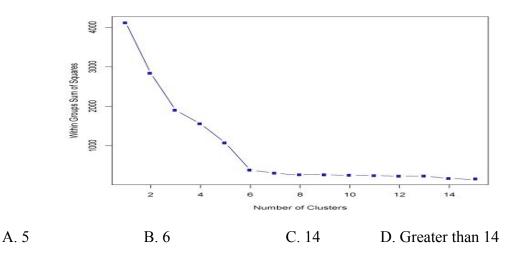
Suppose you are using a Linear SVM classifier with 2 class classification problem. Now you have been given the following data in which some points are circled red that are representing support vectors.

6- If you remove the following red points from the data. Does the decision boundary will change?

A) Yes B) No

7- If you remove the non-red circled points from the data, the decision boundary will change?

A) True	B) False
---------	----------


8-5. What is the minimum number of variables/ features required to perform clustering?

A) 0 B) 1 C) 2 D) more then 2

9- Which of the following method is used for finding optimal of cluster in K-Mean algorithm?

- A) Elbow method B) Manhattan method
- C) Euclidean method D) All of the above E) None of these

10- if you plot the run of number of clusters against the square error cost function, What should be the best choice for number of clusters based on the following results:

Question: II (15 marks)

- 1- Briefly describe, what does it mean n-cross-validation? (3 marks)
- 2- The following confusion matrix shows the results for classifying participants based on the gender into male and female. Answer the following:

	Actually male	Actually female
Predicted male	57	4
predicted female	6	32

A- How many mistakes are made when participants are predicated to be female ? (2 marks)

- B- Calculate the Accuracy of the model (2 marks)
- C- Calculate the precision of the model(2 marks)
- 3- Briefly describe the main idea of SVM ? (3 marks)

4- given the following classification data

instance	X	Y	class
1	7	7	bad
2	7	4	bad
3	3	4	good
4	1	4	good

Use knn with k=3 and euclidean distance to classify the following instance (X=3 and Y=7) using euclidean distance. (3 marks)

Question: III (15 marks)

- 1- Three binary nodes, N1, N2, and N3, split examples into (0, 6), (1,5), and (3,3), respectively. For each node, calculate its entropy. (4 marks)
- 2- Consider the training data (shown in the following Table) for a binary classification problem.

a1	a2	Target class
Т	Т	Р
Т	Т	Р
Т	F	N
F	F	Р
F	Т	Ν
F	Т	Ν

F	F	N
Т	F	Р
F	Т	N

A- What is the entropy of this collection of training examples with respect to the positive class P? (3 marks)

B- What are the information gains of *a1* and *a2* relative to these training examples? (6 marks) C- Which feature do you use as the starting (root) Node when applying a decision tree? (2 marks)

Question: IV (15 marks)

1- What is the assumption of Naive Bayes Classifier? What is the problem that might appear when applying Naive Bayes method on certain data? Briefly describe how to solve this problem. *(5marks)*

2- How does Naive Bayes classifier handle the conditional probability of a continuous feature?

(2 marks)

3- Consider the following data set with features W, X, Y and a Boolean classification C

W	X	Y	С
Т	Т	Т	Т
Т	F	Т	F
Т	F	F	F
F	Т	Т	F
F	F	F	Т

And now you encounter a new tuple having the attributes W=F, X=T, Y=F. How should this example be classified using naive Bayes classifier ? Show your computation (8 marks)

Question: V (15 marks)

- 1- Briefly describe the main idea of the K-Nearest Neighbor (KNN) Algorithm? (3 marks)
- 2- What are the weakness of k-means (3 marks)
- 4. Suppose you want to cluster the eight points shown below using k-means

	Attr ₁	Attr ₂
x1	1.0	1.0
x2	1.5	2.0
x3	3.0	4.0

x4	5.0	7.0
x5	3.5	5.0
x6	4.5	5.0
x7	3.5	4.5

Assume that k = 2 and the initial cluster means is chosen the individual x1, x4. Apply the k-means algorithm until convergence (i.e., until the clusters do not change), using the euclidean distance. (9 marks)