Publications

Export 33 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solution of Uncertain Solid Transportation Problem by Integer Gaining Sharing Knowledge Based Optimization Algorithm", 2020 International Conference on Computational Performance Evaluation (ComPE), pp. 158 - 162, 2-4 July 2020, Submitted. Abstract
n/a
2024
Kong, L. S., M. B. Jasser, S. - S. M. Ajibade, and A. W. Mohamed, "A systematic review on software reliability prediction via swarm intelligence algorithms", Journal of King Saud University-Computer and Information Sciences: Elsevier, pp. 102132, 2024. Abstract
n/a
2023
Sallam, K. M., and A. W. Mohamed, "Single valued neutrosophic sets for assessment quality of suppliers under uncertainty environment", Multicriteria algorithms with applications, vol. 1, pp. 1-10, 2023. Abstract
n/a
2022
Agrawal, P., T. Ganesh, D. Oliva, and A. W. Mohamed, "S-shaped and v-shaped gaining-sharing knowledge-based algorithm for feature selection", Applied Intelligence, vol. 52, issue 1: Springer US New York, pp. 81-112, 2022. Abstract
n/a
MohameD, A., D. Oliva, and P. N. Suganthan, Solving Constrained Single Objective Real-parameter Optimization Problems, : Springer, 2022. Abstract
n/a
MohameD, A., D. Oliva, and P. N. Suganthan, Solving Single Objective Bound-constrained Real-parameter Numerical Optimization Problems, : Springer, 2022. Abstract
n/a
2021
Agrawal, P., T. Ganesh, D. Oliva, and A. W. Mohamed, S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection, , 2021. AbstractWebsite

In machine learning, searching for the optimal feature subset from the original datasets is a very challenging and prominent task. The metaheuristic algorithms are used in finding out the relevant, important features, that enhance the classification accuracy and save the resource time. Most of the algorithms have shown excellent performance in solving feature selection problems. A recently developed metaheuristic algorithm, gaining-sharing knowledge-based optimization algorithm (GSK), is considered for finding out the optimal feature subset. GSK algorithm was proposed over continuous search space; therefore, a total of eight S-shaped and V-shaped transfer functions are employed to solve the problems into binary search space. Additionally, a population reduction scheme is also employed with the transfer functions to enhance the performance of proposed approaches. It explores the search space efficiently and deletes the worst solutions from the search space, due to the updation of population size in every iteration. The proposed approaches are tested over twenty-one benchmark datasets from UCI repository. The obtained results are compared with state-of-the-art metaheuristic algorithms including binary differential evolution algorithm, binary particle swarm optimization, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm, binary salp swarm algorithm. Among eight transfer functions, V4 transfer function with population reduction on binary GSK algorithm outperforms other optimizers in terms of accuracy, fitness values and the minimal number of features. To investigate the results statistically, two non-parametric statistical tests are conducted that concludes the superiority of the proposed approach.

Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "Scheduling shuttle ambulance vehicles for COVID-19 quarantine cases, a multi-objective multiple 0–1 knapsack model with a novel Discrete Binary Gaining-Sharing knowledge-based optimization algorithm", Data Science for COVID-19, pp. 675 - 698, 2021. AbstractWebsite

The purpose of this paper is to present a proposal for scheduling shuttle ambulance vehicles assigned to COVID-19 patients using one of the discrete optimization techniques, namely, the multi-objective multiple 0–1 knapsack problem. The scheduling aims at achieving the best utilization of the predetermined planning time slot; the best utilization is evaluated by maximizing the number of evacuated people who might be infected with the virus to the isolation hospital and maximizing the effectiveness of prioritizing the patients relative to their health status. The complete mathematical model for the problem is formulated including the representation of the decision variables, the problem constraints, and the multi-objective functions. The proposed multi-objective multiple knapsack model is applied to an illustrated case study in Cairo, Egypt, the case study aims at improving the scheduling of ambulance vehicles in the back and forth shuttle movements between patient’ locations and the isolation hospital. The case study is solved using a novel Discrete Binary Gaining-Sharing knowledge-based optimization algorithm (DBGSK). The detail procedure of the novel DBGSK is presented along with the complete steps for solving the case study.

Hadi, A. A., A. W. Mohamed, and K. M. Jambi, "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Heuristics for Optimization and Learning, Cham, Springer International Publishing, pp. 103 - 121, 2021. Abstract

Hadi, Anas A.Mohamed, Ali W.Jambi, Kamal M.Real parameter optimization is one of the active research fields during the last decade. The performance of LSHADE-SPACMALSHADE was competitive in IEEE CEC’2017 competition on Single Objective Bound Constrained Real-Parameter Single Objective Optimization. Besides, it was ranked fourth among twelve papers were presented on and compared to this new benchmark problems. In this work, an improved version named ELSHADE-SPACMASPACMA is introduced. In LSHADE-SPACMA, p value that controls the greediness of the mutation strategy is constant. While in ELSHADE-SPACMAESHADE, p value is dynamic. Larger value of p will enhance the exploration, while smaller values will enhance the exploitation. We further enhanced the performance of ELSHADE-SPACMA by integrating another directed mutation strategy within the hybridization framework. The proposed algorithm has been evaluated using IEEE CEC’2017 benchmark. According to the comparison results, the proposed ELSHADE-SPACMA algorithm is better than LSHADE and LSHADE-SPACMA. Besides, The comparison results between ELSHADE-SPACMA and the best three algorithms from the IEEE CEC’2017 Competition indicate that ELSHADE-SPACMA algorithm shows overall better performance and it is highly competitive algorithm for solving global optimization problems.

Agrawal, P., T. Ganesh, and A. W. Mohamed, Solving knapsack problems using a binary gaining sharing knowledge-based optimization algorithm, , 2021. AbstractWebsite

This article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.

Mohamed, A. W., "Said Ali Hassan, Prachi Agrawal 2, Talari Ganesh 2", Data Science for COVID-19, pp. 675, 2021. Abstract
n/a
Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solving knapsack problems using a binary gaining sharing knowledge-based optimization algorithm", Complex & Intelligent Systems: Springer International Publishing, pp. 1-21, 2021. Abstract
n/a
Hassan, S. A., K. Alnowibet, M. H. Khodeir, P. Agrawal, A. F. Alrasheedi, and A. W. Mohamed, "A Stochastic Flight Problem Simulation to Minimize Cost of Refuelling", Computers, Materials & Continua, vol. 69, issue 1: Tech Science Press, pp. 849-871, 2021. Abstract
n/a
2020
Hassan, S. A., Y. M. Ayman, K. Alnowibet, P. Agrawal, and A. W. Mohamed, "Stochastic Travelling Advisor Problem Simulation with a Case Study: A Novel Binary Gaining-Sharing Knowledge-Based Optimization Algorithm", Complexity, vol. 2020: Hindawi, pp. 6692978, 2020. AbstractWebsite

This article proposes a new problem which is called the Stochastic Travelling Advisor Problem (STAP) in network optimization, and it is defined for an advisory group who wants to choose a subset of candidate workplaces comprising the most profitable route within the time limit of day working hours. A nonlinear binary mathematical model is formulated and a real application case study in the occupational health and safety field is presented. The problem has a stochastic nature in travelling and advising times since the deterministic models are not appropriate for such real-life problems. The STAP is handled by proposing suitable probability distributions for the time parameters and simulating the problem under such conditions. Many application problems like this one are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. A novel binary version of the recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is given. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. The binary version of GSK (BGSK) depends mainly on two stages that enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. The generated simulation runs of the example are solved using the BGSK, and the output histograms and the best-fitted distributions for the total profit and for the route length are obtained.

Chen, E., J. Chen, A. W. Mohamed, B. Wang, Z. Wang, and Y. Chen, "Swarm Intelligence Application to UAV Aided IoT Data Acquisition Deployment Optimization", IEEE Access, vol. 8, pp. 175660 - 175668, 2020. Abstract
n/a
Anas A. Hadi, Ali W. Mohamed, K. J. M., "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Studies in Computational Intelligence, vol. 906: SpringerLink, pp. 103-121, 2020. Abstract
n/a
Anas A. Hadi, Ali W. Mohamed, K. J. M., "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Studies in Computational Intelligence, vol. 906: SpringerLink, pp. 103-121, 2020. Abstract
n/a
Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solution of uncertain solid transportation problem by integer gaining sharing knowledge based optimization algorithm", 2020 international conference on computational performance evaluation (ComPE): IEEE, pp. 158-162, 2020. Abstract
n/a
Chen, E., J. Chen, A. W. Mohamed, B. Wang, Z. Wang, and Y. Chen, "Swarm intelligence application to UAV aided IoT data acquisition deployment optimization", IEEE Access, vol. 8: IEEE, pp. 175660-175668, 2020. Abstract
n/a
2019
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving constrained non-linear integer and mixed-integer global optimization problems using enhanced directed differential evolution algorithm", Machine learning paradigms: Theory and application: Springer International Publishing, pp. 327-349, 2019. Abstract
n/a
Tourism