Publications

Export 30 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sallam, K. M., and A. W. Mohamed, "Single valued neutrosophic sets for assessment quality of suppliers under uncertainty environment", Multicriteria algorithms with applications, vol. 1, pp. 1-10, 2023. Abstract
n/a
M
Mohamed, A. W., Solving large-scale global optimization problems using enhanced adaptive differential evolution algorithm, , vol. 3, issue 4, pp. 205 - 231, 2017. AbstractWebsite

This paper presents enhanced adaptive differential evolution (EADE) algorithm for solving high-dimensional optimization problems over continuous space. To utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and bottom 100p% individuals in the current population of size NP, while the third vector is selected randomly from the middle [NP-2(100p%)] individuals. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the only one of the two mutation rules is applied with the probability of 0.5. This new mutation scheme helps to maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which, in turn, can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 7 and 20 standard high-dimensional benchmark numerical optimization problems for both the IEEE CEC-2008 and the IEEE CEC-2010 Special Session and Competition on Large-Scale Global Optimization. The comparison results between EADE and its version and the other state-of-art algorithms that were all tested on these test suites indicate that the proposed algorithm and its version are highly competitive algorithms for solving large-scale global optimization problems.

Mohamed, A. W., "Solving large-scale global optimization problems using enhanced adaptive differential evolution algorithm", Complex & Intelligent Systems, vol. 3, issue 4: Springer, pp. 205-231, 2017. Abstract
n/a
Mohamed, A. W., "Solving large-scale global optimization problems using enhanced adaptive differential evolution algorithm", Complex & Intelligent Systems, vol. 3, issue 4: Springer, pp. 205-231, 2017. Abstract
n/a
MohameD, A., D. Oliva, and P. N. Suganthan, Solving Constrained Single Objective Real-parameter Optimization Problems, : Springer, 2022. Abstract
n/a
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed", Machine Learning Paradigms: Theory and Application, vol. 801: Springer, pp. 327, 2018. Abstract
n/a
Mohamed, A. W., "Said Ali Hassan, Prachi Agrawal 2, Talari Ganesh 2", Data Science for COVID-19, pp. 675, 2021. Abstract
n/a
Mohamed, A. W., Solving stochastic programming problems using new approach to Differential Evolution algorithm, , vol. 18, issue 2, pp. 75 - 86, 2017. AbstractWebsite

This paper presents a new approach to Differential Evolution algorithm for solving stochastic programming problems, named DESP. The proposed algorithm introduces a new triangular mutation rule based on the convex combination vector of the triangle and the difference vector between the best and the worst individuals among the three randomly selected vectors. The proposed novel approach to mutation operator is shown to enhance the global and local search capabilities and to increase the convergence speed of the new algorithm compared with conventional DE. DESP uses Deb’s constraint handling technique based on feasibility and the sum of constraint violations without any additional parameters. Besides, a new dynamic tolerance technique to handle equality constraints is also adopted. Two models of stochastic programming (SP) problems are considered: Linear Stochastic Fractional Programming Problems and Multi-objective Stochastic Linear Programming Problems. The comparison results between the DESP and basic DE, basic particle swarm optimization (PSO), Genetic Algorithm (GA) and the available results from where it is indicated that the proposed DESP algorithm is competitive with, and in some cases superior to, other algorithms in terms of final solution quality, efficiency and robustness of the considered problems in comparison with the quoted results in the literature.

Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving constrained non-linear integer and mixed-integer global optimization problems using enhanced directed differential evolution algorithm", Machine learning paradigms: Theory and application: Springer International Publishing, pp. 327-349, 2019. Abstract
n/a
Mohamed, A. W., "Solving stochastic programming problems using new approach to Differential Evolution algorithm", Egyptian Informatics Journal, vol. 18, issue 2: ELSEVIER, pp. 75-86, 2017. Abstract
n/a
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

MohameD, A., D. Oliva, and P. N. Suganthan, Solving Single Objective Bound-constrained Real-parameter Numerical Optimization Problems, : Springer, 2022. Abstract
n/a
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

K
Kong, L. S., M. B. Jasser, S. - S. M. Ajibade, and A. W. Mohamed, "A systematic review on software reliability prediction via swarm intelligence algorithms", Journal of King Saud University-Computer and Information Sciences: Elsevier, pp. 102132, 2024. Abstract
n/a
H
Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "Scheduling shuttle ambulance vehicles for COVID-19 quarantine cases, a multi-objective multiple 0–1 knapsack model with a novel Discrete Binary Gaining-Sharing knowledge-based optimization algorithm", Data Science for COVID-19, pp. 675 - 698, 2021. AbstractWebsite

The purpose of this paper is to present a proposal for scheduling shuttle ambulance vehicles assigned to COVID-19 patients using one of the discrete optimization techniques, namely, the multi-objective multiple 0–1 knapsack problem. The scheduling aims at achieving the best utilization of the predetermined planning time slot; the best utilization is evaluated by maximizing the number of evacuated people who might be infected with the virus to the isolation hospital and maximizing the effectiveness of prioritizing the patients relative to their health status. The complete mathematical model for the problem is formulated including the representation of the decision variables, the problem constraints, and the multi-objective functions. The proposed multi-objective multiple knapsack model is applied to an illustrated case study in Cairo, Egypt, the case study aims at improving the scheduling of ambulance vehicles in the back and forth shuttle movements between patient’ locations and the isolation hospital. The case study is solved using a novel Discrete Binary Gaining-Sharing knowledge-based optimization algorithm (DBGSK). The detail procedure of the novel DBGSK is presented along with the complete steps for solving the case study.

Hassan, S. A., K. Alnowibet, M. H. Khodeir, P. Agrawal, A. F. Alrasheedi, and A. W. Mohamed, "A Stochastic Flight Problem Simulation to Minimize Cost of Refuelling", Computers, Materials & Continua, vol. 69, issue 1: Tech Science Press, pp. 849-871, 2021. Abstract
n/a
Hadi, A. A., A. W. Mohamed, and K. M. Jambi, "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Heuristics for Optimization and Learning, Cham, Springer International Publishing, pp. 103 - 121, 2021. Abstract

Hadi, Anas A.Mohamed, Ali W.Jambi, Kamal M.Real parameter optimization is one of the active research fields during the last decade. The performance of LSHADE-SPACMALSHADE was competitive in IEEE CEC’2017 competition on Single Objective Bound Constrained Real-Parameter Single Objective Optimization. Besides, it was ranked fourth among twelve papers were presented on and compared to this new benchmark problems. In this work, an improved version named ELSHADE-SPACMASPACMA is introduced. In LSHADE-SPACMA, p value that controls the greediness of the mutation strategy is constant. While in ELSHADE-SPACMAESHADE, p value is dynamic. Larger value of p will enhance the exploration, while smaller values will enhance the exploitation. We further enhanced the performance of ELSHADE-SPACMA by integrating another directed mutation strategy within the hybridization framework. The proposed algorithm has been evaluated using IEEE CEC’2017 benchmark. According to the comparison results, the proposed ELSHADE-SPACMA algorithm is better than LSHADE and LSHADE-SPACMA. Besides, The comparison results between ELSHADE-SPACMA and the best three algorithms from the IEEE CEC’2017 Competition indicate that ELSHADE-SPACMA algorithm shows overall better performance and it is highly competitive algorithm for solving global optimization problems.

C
Chen, E., J. Chen, A. W. Mohamed, B. Wang, Z. Wang, and Y. Chen, "Swarm intelligence application to UAV aided IoT data acquisition deployment optimization", IEEE Access, vol. 8: IEEE, pp. 175660-175668, 2020. Abstract
n/a
Chen, E., J. Chen, A. W. Mohamed, B. Wang, Z. Wang, and Y. Chen, "Swarm Intelligence Application to UAV Aided IoT Data Acquisition Deployment Optimization", IEEE Access, vol. 8, pp. 175660 - 175668, 2020. Abstract
n/a
A
Anas A. Hadi, Ali W. Mohamed, K. J. M., "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Studies in Computational Intelligence, vol. 906: SpringerLink, pp. 103-121, 2020. Abstract
n/a
Anas A. Hadi, Ali W. Mohamed, K. J. M., "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Studies in Computational Intelligence, vol. 906: SpringerLink, pp. 103-121, 2020. Abstract
n/a
Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solution of Uncertain Solid Transportation Problem by Integer Gaining Sharing Knowledge Based Optimization Algorithm", 2020 International Conference on Computational Performance Evaluation (ComPE), pp. 158 - 162, 2-4 July 2020, Submitted. Abstract
n/a