Publications

Export 11 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Mohamed, A. W., A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, and P. N. Suganthan, "Problem definitions and evaluation criteria for the CEC 2021 special session and competition on single objective bound constrained numerical optimization", Tech. Rep.: Nanyang Technological University Singapore, 2020. Abstract
n/a
Mohamed, A. W., A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, and P. N. Suganthan, "Problem definitions and evaluation criteria for the CEC 2021 special session and competition on single objective bound constrained numerical optimization", Tech. Rep.: Nanyang Technological University Singapore, 2020. Abstract
n/a
Shekhawat, S., A. Saxena, R. A. ZeinEldin, and A. W. Mohamed, "Prediction of Infectious Disease to Reduce the Computation Stress on Medical and Health Care Facilitators", Mathematics, vol. 11, issue 2: MDPI, pp. 490, 2023. Abstract
n/a
Ramujee, K., P. Sadula, G. Madhu, S. Kautish, A. S. Almazyad, G. Xiong, and A. W. Mohamed, "Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks.", CMES-Computer Modeling in Engineering & Sciences, vol. 139, issue 2, 2024. Abstract
n/a
De, S., D. Saha, A. M. K. Sallam, and I. Radwan, Practical autonomous driving: A survey of challenges and opportunities, : Preprints, 2023. Abstract
n/a
Mathur, S. K., A. Saxena, A. W. Mohamed, K. M. Sallam, and S. Mathur, "Post-COVID-19 Indian healthcare system: Challenges and solutions", Deep Learning in Personalized Healthcare and Decision Support: Academic Press, pp. 163-173, 2023. Abstract
n/a
Alshamrani, A. M., A. Saxena, S. Shekhawat, H. M. Zawbaa, and A. W. Mohamed, "Performance evaluation of ingenious crow search optimization algorithm for protein structure prediction", Processes, vol. 11, issue 6: MDPI, pp. 1655, 2023. Abstract
n/a
Ali Wagdy Mohamed, Hegazy Zaher, M. K., "A Particle Swarm Approach for Solving Stochastic Optimization Problems", applied mathematics & information sciences, vol. 5, no. 3: naturalspublishing, pp. 379Sā€“401S, 2011. Abstract
n/a
Ali Wagdy Mohamed, Hegazy Zaher, M. K., "A Particle Swarm Approach for Solving Stochastic Optimization Problems", applied mathematics & information sciences, vol. 5, issue 3: naturalspublishing, pp. 379Sā€“401S, 2011. Abstract
n/a
Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized Benchmarking: An Outline of the Idea and a Feasibility Study", Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, Association for Computing Machinery, pp. 197ā€“198, 2020. Abstract

Performance of real-parameter global optimization algorithms is typically evaluated using sets of test problems. We propose a new methodology of extending these benchmarks to obtain a more balanced experimental design. This can be done by selectively removing some of the transformations originally used in the definitions of the test problems such as rotation, scaling, or translation. In this way, we obtain several variants of each problem parametrized by interpretable, high-level characteristics. These binary parameters are used as predictors in a multiple regression model explaining the algorithmic performance. Linear models allow for the attribution of strength and direction of performance changes to particular characteristics of the optimization problems and thus provide insight into the underlying mechanics of the investigated algorithms. The proposed ideas are illustrated with an application example showing the feasibility of the new benchmark. Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic performance and the optimization problems. The overall goal is to systematize a method of matching problems to algorithms and in this way constructively address the limitations imposed by the no free lunch theorem.

Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized benchmarking: an outline of the idea and a feasibility study", Proceedings of the 2020 genetic and evolutionary computation conference companion, pp. 197-198, 2020. Abstract
n/a