Xiong, G., L. Li, A. W. Mohamed, X. Yuan, and J. Zhang,
"A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm",
Energy Reports, vol. 7: Elsevier, pp. 3286-3301, 2021.
Abstractn/a
Xiong, G., L. Li, A. W. Mohamed, X. Yuan, and J. Zhang,
"A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm",
Energy Reports, vol. 7: Elsevier, pp. 3286-3301, 2021.
Abstractn/a
Xiong, G., L. Li, A. W. Mohamed, X. Yuan, and J. Zhang,
A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm,
, vol. 7, pp. 3286 - 3301, 2021.
AbstractFor the solar photovoltaic (PV) system to operate efficiently, it is necessary to effectively establish an equivalent model of PV cell and extract the relevant unknown model parameters accurately. This paper introduces a new metaheuristic algorithm, i.e., gaining-sharing knowledge based algorithm (GSK) to solve the solar PV model parameter extraction problem. This algorithm simulates the process of knowledge acquisition and sharing in the human life cycle and is with strong competitiveness in solving optimization problems. It includes two significant phases. The first phase is the beginner–intermediate or junior acquisition and sharing stage, and the second phase is the intermediate–expert or senior acquisition and sharing stage. In order to verify the effectiveness of GSK, it is applied to five PV models including the single diode model, double diode model, and three PV modules. The influence of population size on the algorithm performance is empirically investigated. Besides, it is further compared with some other excellent metaheuristic algorithms including basic algorithms and advanced algorithms. Among the five PV models, the root mean square error values between the measured data and the calculated data of GSK are 9.8602E−04 ± 2.18E−17, 9.8280E−04 ± 8.72E−07, 2.4251E−03 ± 1.04E−09, 1.7298E−03 ± 6.25E−18, and 1.6601E−02 ± 1.44E−16, respectively. The results show that GSK has overall better robustness, convergence, and accuracy.
Agrawal, P., T. Ganesh, and A. W. Mohamed,
A novel binary gaining–sharing knowledge-based optimization algorithm for feature selection,
, vol. 33, issue 11, pp. 5989 - 6008, 2021.
AbstractTo obtain the optimal set of features in feature selection problems is the most challenging and prominent problem in machine learning. Very few human-related metaheuristic algorithms were developed and solved this type of problem. It motivated us to check the performance of recently developed gaining–sharing knowledge-based optimization algorithm (GSK), which is based on the concept of gaining and sharing knowledge of humans throughout their lifespan. It depends on two stages: beginners–intermediate gaining and sharing stage and intermediate–experts gaining and sharing stage. In this study, two approaches are proposed to solve feature selection problems: FS-BGSK: a novel binary version of GSK algorithm that relies on these two stages with knowledge factor 1 and FS-pBGSK: a population reduction technique that is employed on BGSK algorithm to enhance the exploration and exploitation quality of FS-BGSK. The proposed approaches are checked on twenty two feature selection benchmark datasets from UCI repository that contains small, medium and large dimensions datasets. The obtained results are compared with seven state-of-the-art metaheuristic algorithms; binary differential evolution, binary particle swarm optimization algorithm, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm and binary salp swarm algorithm. It concludes that FS-pBGSK and FS-BGSK outperform other algorithms in terms of accuracy, convergence and robustness in most of the datasets.