Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
Mohamed, A. W., A. A. Hadi, A. M. Fattouh, and K. M. Jambi, "LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems", 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145 - 152, 5-8 June 2017, Submitted. Abstract
n/a
2019
Hadi, A. A., A. W. Mohamed, and K. M. Jambi, LSHADE-SPA memetic framework for solving large-scale optimization problems, , vol. 5, issue 1, pp. 25 - 40, 2019. AbstractWebsite

During the last decade, large-scale global optimization has been one of the active research fields. Optimization algorithms are affected by the curse of dimensionality associated with this kind of complex problems. To solve this problem, a new memetic framework for solving large-scale global optimization problems is proposed in this paper. In the proposed framework, success history-based differential evolution with linear population size reduction and semi-parameter adaptation (LSHADE-SPA) is used for global exploration, while a modified version of multiple trajectory search is used for local exploitation. The framework introduced in this paper is further enhanced by the concept of divide and conquer, where the dimensions are randomly divided into groups, and each group is solved separately. The proposed framework is evaluated using IEEE CEC2010 and the IEEE CEC2013 benchmarks designed for large-scale global optimization. The comparison results between our framework and other state-of-the-art algorithms indicate that our proposed framework is competitive in solving large-scale global optimization problems.