Agrawal, P., K. Alnowibet, T. Ganesh, A. F. Alrasheedi, H. Ahmad, and W. A. Mohamed,
"An artificial intelligence approach for solving stochastic transportation problems",
Computers, Materials & Continua, vol. 70, issue 1, pp. 817-829, 2022.
Abstractn/a
Kumar Mohapatra, P., S. Kumar Rout, S. K. Bisoy, S. Kautish, M. Hamzah, M. B. Jasser, and A. W. Mohamed,
"Application of Bat algorithm and its modified form trained with ANN in channel equalization",
Symmetry, vol. 14, issue 10: MDPI, pp. 2078, 2022.
Abstractn/a
Jain, K., A. Saxena, A. M. Alshamrani, A. F. Alrasheedi, K. A. Alnowibet, and A. W. Mohamed,
"An amended whale optimization algorithm for optimal bidding in day ahead electricity market",
Axioms, vol. 11, issue 9: MDPI, pp. 456, 2022.
Abstractn/a
Ali, S., A. Bhargava, A. Saxena, A. S. Almazyad, K. M. Sallam, and A. W. Mohamed,
"An Amended Crow Search Algorithm for Hybrid Active Power Filter Design",
Processes, vol. 11, issue 9: MDPI, pp. 2550, 2023.
Abstractn/a
Alnowibet, K. A., A. Khireldin, M. Abdelawwad, and A. W. Mohamed,
"Airport terminal building capacity evaluation using queuing system",
Alexandria Engineering Journal, vol. 61, issue 12: Elsevier, pp. 10109-10118, 2022.
Abstractn/a
Abdelghafar, S., A. Khater, A. Wagdy, A. Darwish, and A. E. Hassanien,
"Aero engines remaining useful life prediction based on enhanced adaptive guided differential evolution",
Evolutionary Intelligence, vol. 17, issue 2: Springer Berlin Heidelberg Berlin/Heidelberg, pp. 1209-1220, 2024.
Abstractn/a
El-kenawy, E. - S. M., H. F. Abutarboush, A. W. Mohamed, and Abdelhameed Ibrahim,
"Advance artificial intelligence technique for designing double T-shaped monopole antenna.",
Computers, Materials & Continua, vol. 69, issue 3, 2021.
Abstractn/a
Mohamed, A. W., and A. K. Mohamed,
Adaptive guided differential evolution algorithm with novel mutation for numerical optimization,
, vol. 10, issue 2, pp. 253 - 277, 2019.
AbstractThis paper presents adaptive guided differential evolution algorithm (AGDE) for solving global numerical optimization problems over continuous space. In order to utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and the bottom 100p% individuals in the current population of size NP while the third vector is selected randomly from the middle [NP-2(100p %)] individuals. This new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Besides, a novel and effective adaptation scheme is used to update the values of the crossover rate to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of AGDE, Numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30, and 50 dimensions, including a comparison with classical DE schemes and some recent evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, AGDE is significantly better than, or at least comparable to state-of-the-art approaches.
Cheng, L., J. - X. Zhou, X. Hu, A. W. Mohamed, and Y. Liu,
"Adaptive differential evolution with fitness-based crossover rate for global numerical optimization",
Complex & Intelligent Systems, vol. 10, issue 1: Springer International Publishing Cham, pp. 551-576, 2024.
Abstractn/a
Cheng, L., Y. Wang, C. Wang, A. W. Mohamed, and T. Xiao,
"Adaptive Differential Evolution Based on Successful Experience Information",
IEEE Access, vol. 8, pp. 164611 - 164636, 2020.
Abstractn/a
Cheng, L., Y. Wang, C. Wang, A. W. Mohamed, and T. Xiao,
"Adaptive differential evolution based on successful experience information",
IEEE Access, vol. 8: IEEE, pp. 164611-164636, 2020.
Abstractn/a
Xiong, G., Z. Gu, A. W. Mohamed, H. R. E. H. Bouchekara, and P. N. Suganthan,
"Accurate parameters extraction of photovoltaic models with multi-strategy gaining-sharing knowledge-based algorithm",
Information Sciences, vol. 670: Elsevier, pp. 120627, 2024.
Abstractn/a
Reyana, A., S. Kautish, P. M. S. Karthik, I. A. Al-Baltah, M. B. Jasser, and A. W. Mohamed,
"Accelerating crop yield: multisensor data fusion and machine learning for agriculture text classification",
IEEE Access, vol. 11: IEEE, pp. 20795-20805, 2023.
Abstractn/a