Agrawal, P., T. Ganesh, and A. W. Mohamed,
Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection,
, vol. 25, issue 14, pp. 9505 - 9528, 2021.
AbstractThe gaining sharing knowledge based optimization algorithm (GSK) is recently developed metaheuristic algorithm, which is based on how humans acquire and share knowledge during their life-time. This paper investigates a modified version of the GSK algorithm to find the best feature subsets. Firstly, it represents a binary variant of GSK algorithm by employing a probability estimation operator (Bi-GSK) on the two main pillars of GSK algorithm. And then, the chaotic maps are used to enhance the performance of the proposed algorithm. Ten different types of chaotic maps are considered to adapt the parameters of the GSK algorithm that make a proper balance between exploration and exploitation and save the algorithm from premature convergence. To check the performance of proposed approaches of GSK algorithm, twenty-one benchmark datasets are taken from the UCI repository for feature selection. The performance is measured by calculating different type of measures, and several metaheuristic algorithms are adopted to compare the obtained results. The results indicate that Chebyshev chaotic map shows the best result among all chaotic maps which improve the performance accuracy and convergence rate of the original algorithm. Moreover, it outperforms the other metaheuristic algorithms in terms of efficiency, fitness value and the minimum number of selected features.
Song, Y., D. Wu, A. W. Mohamed, X. Zhou, B. Zhang, and W. Deng,
"Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models",
Complexity, vol. 2021: Hindawi, pp. 6660115, 2021.
AbstractIn the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced success history adaptive DE with greedy mutation strategy (EBLSHADE) is employed to optimize parameters of PV models to propose a parameter optimization method in this paper. In the EBLSHADE, the linear population size reduction strategy is used to gradually reduce population to improve the search capabilities and balance the exploitation and exploration capabilities. The less and more greedy mutation strategy is used to enhance the exploitation capability and the exploration capability. Finally, a parameter optimization method based on EBLSHADE is proposed to optimize parameters of PV models. The different PV models are selected to prove the effectiveness of the proposed method. Comparison results demonstrate that the EBLSHADE is an effective and efficient method and the parameter optimization method is beneficial to design, control, and optimize the PV systems.
Xiong, G., L. Li, A. W. Mohamed, X. Yuan, and J. Zhang,
A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm,
, vol. 7, pp. 3286 - 3301, 2021.
AbstractFor the solar photovoltaic (PV) system to operate efficiently, it is necessary to effectively establish an equivalent model of PV cell and extract the relevant unknown model parameters accurately. This paper introduces a new metaheuristic algorithm, i.e., gaining-sharing knowledge based algorithm (GSK) to solve the solar PV model parameter extraction problem. This algorithm simulates the process of knowledge acquisition and sharing in the human life cycle and is with strong competitiveness in solving optimization problems. It includes two significant phases. The first phase is the beginner–intermediate or junior acquisition and sharing stage, and the second phase is the intermediate–expert or senior acquisition and sharing stage. In order to verify the effectiveness of GSK, it is applied to five PV models including the single diode model, double diode model, and three PV modules. The influence of population size on the algorithm performance is empirically investigated. Besides, it is further compared with some other excellent metaheuristic algorithms including basic algorithms and advanced algorithms. Among the five PV models, the root mean square error values between the measured data and the calculated data of GSK are 9.8602E−04 ± 2.18E−17, 9.8280E−04 ± 8.72E−07, 2.4251E−03 ± 1.04E−09, 1.7298E−03 ± 6.25E−18, and 1.6601E−02 ± 1.44E−16, respectively. The results show that GSK has overall better robustness, convergence, and accuracy.
Agrawal, P., T. Ganesh, and A. W. Mohamed,
A novel binary gaining–sharing knowledge-based optimization algorithm for feature selection,
, vol. 33, issue 11, pp. 5989 - 6008, 2021.
AbstractTo obtain the optimal set of features in feature selection problems is the most challenging and prominent problem in machine learning. Very few human-related metaheuristic algorithms were developed and solved this type of problem. It motivated us to check the performance of recently developed gaining–sharing knowledge-based optimization algorithm (GSK), which is based on the concept of gaining and sharing knowledge of humans throughout their lifespan. It depends on two stages: beginners–intermediate gaining and sharing stage and intermediate–experts gaining and sharing stage. In this study, two approaches are proposed to solve feature selection problems: FS-BGSK: a novel binary version of GSK algorithm that relies on these two stages with knowledge factor 1 and FS-pBGSK: a population reduction technique that is employed on BGSK algorithm to enhance the exploration and exploitation quality of FS-BGSK. The proposed approaches are checked on twenty two feature selection benchmark datasets from UCI repository that contains small, medium and large dimensions datasets. The obtained results are compared with seven state-of-the-art metaheuristic algorithms; binary differential evolution, binary particle swarm optimization algorithm, binary bat algorithm, binary grey wolf optimizer, binary ant lion optimizer, binary dragonfly algorithm and binary salp swarm algorithm. It concludes that FS-pBGSK and FS-BGSK outperform other algorithms in terms of accuracy, convergence and robustness in most of the datasets.
Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed,
"Optimum Distribution of Protective Materials for COVID−19 with a Discrete Binary Gaining-Sharing Knowledge-Based Optimization Algorithm",
Computational Intelligence Techniques for Combating COVID-19, Cham, Springer International Publishing, pp. 135 - 157, 2021.
AbstractMany application problems are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. One of these practical applications is to optimally distribute protective materials for the newly emerged COVID-19. It is defined for a decision-maker who wants to choose a subset of candidate hospitals comprising the maximization of the distributed quantities of protective materials to a set of chosen hospitals within a specific time shift. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study; the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK). The solution algorithm proposes a novel binary adaptation of a recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge through their life span. Discrete binary version of GSK named novel binary gaining-sharing knowledge-based optimization algorithm (DBGSK) depends mainly on two binary stages: binary junior gaining-sharing stage and binary senior gaining-sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.
Hadi, A. A., A. W. Mohamed, and K. M. Jambi,
"Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm",
Heuristics for Optimization and Learning, Cham, Springer International Publishing, pp. 103 - 121, 2021.
AbstractHadi, Anas A.Mohamed, Ali W.Jambi, Kamal M.Real parameter optimization is one of the active research fields during the last decade. The performance of LSHADE-SPACMALSHADE was competitive in IEEE CEC’2017 competition on Single Objective Bound Constrained Real-Parameter Single Objective Optimization. Besides, it was ranked fourth among twelve papers were presented on and compared to this new benchmark problems. In this work, an improved version named ELSHADE-SPACMASPACMA is introduced. In LSHADE-SPACMA, p value that controls the greediness of the mutation strategy is constant. While in ELSHADE-SPACMAESHADE, p value is dynamic. Larger value of p will enhance the exploration, while smaller values will enhance the exploitation. We further enhanced the performance of ELSHADE-SPACMA by integrating another directed mutation strategy within the hybridization framework. The proposed algorithm has been evaluated using IEEE CEC’2017 benchmark. According to the comparison results, the proposed ELSHADE-SPACMA algorithm is better than LSHADE and LSHADE-SPACMA. Besides, The comparison results between ELSHADE-SPACMA and the best three algorithms from the IEEE CEC’2017 Competition indicate that ELSHADE-SPACMA algorithm shows overall better performance and it is highly competitive algorithm for solving global optimization problems.
Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed,
"A Travelling Disinfection-Man Problem (TDP) for COVID-19: A Nonlinear Binary Constrained Gaining-Sharing Knowledge-Based Optimization Algorithm",
Intelligent Data Analysis for COVID-19 Pandemic, Singapore, Springer Singapore, pp. 291 - 318, 2021.
AbstractAn improved scheduling the disinfection process of the new coronavirus (COVID-19) is introduced. The scheduling aims at achieving the best utilization of the available day time, which is calculated as the total disinfection time minus the total loss travelling time. In this regard, a new application problem is presented, which is called a travelling disinfection-man problem (TDP). The new problem (TDP) in network optimization resemble somehow the famous travelling salesman problems (TSP) but with basic distinct variations where a disinfection group is likely to select a route to reach a subset of predetermined places to be disinfected with the most utilization of the available day working hours. A nonlinear binary model is introduced with a detailed real application case study involving the improving the scheduling of coronavirus disinfection process for five contaminated faculties in Ain Shams University in Cairo, and the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK).
Said Ali Hassan, Khalid Alnowibet, P. A. A. W. M.,
"Managing Delivery of Safeguarding Substances as a Mitigation Against Outbreaks of Pandemics",
Computers, Materials & Continua, vol. 68, no. 1, pp. 1161–1181, 2021.
AbstractThe optimum delivery of safeguarding substances is a major part of supply chain management and a crucial issue in the mitigation against the outbreak of pandemics. A problem arises for a decision maker who wants to optimally choose a subset of candidate consumers to maximize the distributed quantities of the needed safeguarding substances within a specific time period. A nonlinear binary mathematical programming model for the problem is formulated. The decision variables are binary ones that represent whether to choose a specific consumer, and design constraints are formulated to keep track of the chosen route. To better illustrate the problem, objective, and problem constraints, a real application case study is presented. The case study involves the optimum delivery of safeguarding substances to several hospitals in the Al-Gharbia Governorate in Egypt. The hospitals are selected to represent the consumers of safeguarding substances, as they are the first crucial frontline for mitigation against a pandemic outbreak. A distribution truck is used to distribute the substances from the main store to the hospitals in specified required quantities during a given working shift. The objective function is formulated in order to maximize the total amount of delivered quantities during the specified time period. The case study is solved using a novel Discrete Binary Gaining Sharing Knowledge-based Optimization algorithm (DBGSK), which involves two main stages: discrete binary junior and senior gaining and sharing stages. DBGSK has the ability of finding the solutions of the introduced problem, and the obtained results demonstrate robustness and convergence toward the optimal solutions.
Said Ali Hassan, Khalid Alnowibet, P. A. A. W. M.,
"Optimum Location of Field Hospitals for COVID-19: A Nonlinear Binary Metaheuristic Algorithm",
Computers, Materials & Continua, vol. 68, no. 1, pp. 1183–1202, 2021.
AbstractDetermining the optimum location of facilities is critical in many fields, particularly in healthcare. This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019 (COVID-19) pandemic. The used model is the most appropriate among the three most common location models utilized to solve healthcare problems (the set covering model, the maximal covering model, and the P-median model). The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints. The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction. The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt. In this case study, a discrete binary gaining–sharing knowledge-based optimization (DBGSK) algorithm is proposed. The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life. The DBGSK algorithm mainly depends on two junior and senior binary stages. These two stages enable DBGSK to explore and exploit the search space efficiently and effectively, and thus it can solve problems in binary space.