Mohamed, A. W., and A. K. Mohamed,
Adaptive guided differential evolution algorithm with novel mutation for numerical optimization,
, vol. 10, issue 2, pp. 253 - 277, 2019.
AbstractThis paper presents adaptive guided differential evolution algorithm (AGDE) for solving global numerical optimization problems over continuous space. In order to utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and the bottom 100p% individuals in the current population of size NP while the third vector is selected randomly from the middle [NP-2(100p %)] individuals. This new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Besides, a novel and effective adaptation scheme is used to update the values of the crossover rate to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of AGDE, Numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30, and 50 dimensions, including a comparison with classical DE schemes and some recent evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, AGDE is significantly better than, or at least comparable to state-of-the-art approaches.
Mohamed, A. W., A. K. Mohamed, E. Z. Elfeky, and M. Saleh,
"Enhanced Directed Differential Evolution Algorithm for Solving Constrained Engineering Optimization Problems",
International Journal of Applied Metaheuristic Computing (IJAMC), vol. 10, issue 1, Hershey, PA, USA, IGI Global, pp. 1 - 28, 2019.
AbstractThe performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.
Hadi, A. A., A. W. Mohamed, and K. M. Jambi,
LSHADE-SPA memetic framework for solving large-scale optimization problems,
, vol. 5, issue 1, pp. 25 - 40, 2019.
AbstractDuring the last decade, large-scale global optimization has been one of the active research fields. Optimization algorithms are affected by the curse of dimensionality associated with this kind of complex problems. To solve this problem, a new memetic framework for solving large-scale global optimization problems is proposed in this paper. In the proposed framework, success history-based differential evolution with linear population size reduction and semi-parameter adaptation (LSHADE-SPA) is used for global exploration, while a modified version of multiple trajectory search is used for local exploitation. The framework introduced in this paper is further enhanced by the concept of divide and conquer, where the dimensions are randomly divided into groups, and each group is solved separately. The proposed framework is evaluated using IEEE CEC2010 and the IEEE CEC2013 benchmarks designed for large-scale global optimization. The comparison results between our framework and other state-of-the-art algorithms indicate that our proposed framework is competitive in solving large-scale global optimization problems.