Publications

Export 56 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "Optimum Distribution of Protective Materials for COVID−19 with a Discrete Binary Gaining-Sharing Knowledge-Based Optimization Algorithm", Computational Intelligence Techniques for Combating COVID-19, Cham, Springer International Publishing, pp. 135 - 157, 2021. Abstract

Many application problems are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. One of these practical applications is to optimally distribute protective materials for the newly emerged COVID-19. It is defined for a decision-maker who wants to choose a subset of candidate hospitals comprising the maximization of the distributed quantities of protective materials to a set of chosen hospitals within a specific time shift. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study; the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK). The solution algorithm proposes a novel binary adaptation of a recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge through their life span. Discrete binary version of GSK named novel binary gaining-sharing knowledge-based optimization algorithm (DBGSK) depends mainly on two binary stages: binary junior gaining-sharing stage and binary senior gaining-sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.

Mohamed, A. K., and A. W. Mohamed, "Real-Parameter Unconstrained Optimization Based on Enhanced AGDE Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 431 - 450, 2019. Abstract

Adaptive guided differential evolution algorithm (AGDE) is a differential evolution (DE) algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP − 2 * 100% and 100% respectively. where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems. The performance of the proposed algorithm is evaluated using CEC2013 benchmarks and the results are compared with the state-of-art DE and non-DE algorithms, the results showed a great competitiveness for the proposed algorithm over the other algorithms, and the original AGDE.

Hadi, A. A., A. W. Mohamed, and K. M. Jambi, "Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm", Heuristics for Optimization and Learning, Cham, Springer International Publishing, pp. 103 - 121, 2021. Abstract

Hadi, Anas A.Mohamed, Ali W.Jambi, Kamal M.Real parameter optimization is one of the active research fields during the last decade. The performance of LSHADE-SPACMALSHADE was competitive in IEEE CEC’2017 competition on Single Objective Bound Constrained Real-Parameter Single Objective Optimization. Besides, it was ranked fourth among twelve papers were presented on and compared to this new benchmark problems. In this work, an improved version named ELSHADE-SPACMASPACMA is introduced. In LSHADE-SPACMA, p value that controls the greediness of the mutation strategy is constant. While in ELSHADE-SPACMAESHADE, p value is dynamic. Larger value of p will enhance the exploration, while smaller values will enhance the exploitation. We further enhanced the performance of ELSHADE-SPACMA by integrating another directed mutation strategy within the hybridization framework. The proposed algorithm has been evaluated using IEEE CEC’2017 benchmark. According to the comparison results, the proposed ELSHADE-SPACMA algorithm is better than LSHADE and LSHADE-SPACMA. Besides, The comparison results between ELSHADE-SPACMA and the best three algorithms from the IEEE CEC’2017 Competition indicate that ELSHADE-SPACMA algorithm shows overall better performance and it is highly competitive algorithm for solving global optimization problems.

Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "A Travelling Disinfection-Man Problem (TDP) for COVID-19: A Nonlinear Binary Constrained Gaining-Sharing Knowledge-Based Optimization Algorithm", Intelligent Data Analysis for COVID-19 Pandemic, Singapore, Springer Singapore, pp. 291 - 318, 2021. Abstract

An improved scheduling the disinfection process of the new coronavirus (COVID-19) is introduced. The scheduling aims at achieving the best utilization of the available day time, which is calculated as the total disinfection time minus the total loss travelling time. In this regard, a new application problem is presented, which is called a travelling disinfection-man problem (TDP). The new problem (TDP) in network optimization resemble somehow the famous travelling salesman problems (TSP) but with basic distinct variations where a disinfection group is likely to select a route to reach a subset of predetermined places to be disinfected with the most utilization of the available day working hours. A nonlinear binary model is introduced with a detailed real application case study involving the improving the scheduling of coronavirus disinfection process for five contaminated faculties in Ain Shams University in Cairo, and the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK).

Conference Paper
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Enhancing AGDE Algorithm Using Population Size Reduction for Global Numerical Optimization", The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Cham, Springer International Publishing, pp. 62 - 72, 2018. Abstract

Adaptive guided differential evolution algorithm (AGDE) is a DE algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP-2 * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems.

Mohamed, A. W., A. A. Hadi, A. K. Mohamed, and N. H. Awad, "Evaluating the Performance of Adaptive GainingSharing Knowledge Based Algorithm on CEC 2020 Benchmark Problems", 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1 - 8, 19-24 July 2020, Submitted. Abstract
n/a
Mohamed, A. K., A. A. Hadi, and A. W. Mohamed, "Generalized Adaptive Differential Evolution algorithm for Solving CEC 2020 Benchmark Problems", 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 391 - 396, 24-26 Oct. 2020, Submitted. Abstract
n/a
Mohamed, A. W., A. A. Hadi, A. M. Fattouh, and K. M. Jambi, "LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems", 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145 - 152, 5-8 June 2017, Submitted. Abstract
n/a
Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized Benchmarking: An Outline of the Idea and a Feasibility Study", Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, Association for Computing Machinery, pp. 197–198, 2020. Abstract

Performance of real-parameter global optimization algorithms is typically evaluated using sets of test problems. We propose a new methodology of extending these benchmarks to obtain a more balanced experimental design. This can be done by selectively removing some of the transformations originally used in the definitions of the test problems such as rotation, scaling, or translation. In this way, we obtain several variants of each problem parametrized by interpretable, high-level characteristics. These binary parameters are used as predictors in a multiple regression model explaining the algorithmic performance. Linear models allow for the attribution of strength and direction of performance changes to particular characteristics of the optimization problems and thus provide insight into the underlying mechanics of the investigated algorithms. The proposed ideas are illustrated with an application example showing the feasibility of the new benchmark. Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic performance and the optimization problems. The overall goal is to systematize a method of matching problems to algorithms and in this way constructively address the limitations imposed by the no free lunch theorem.

Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solution of Uncertain Solid Transportation Problem by Integer Gaining Sharing Knowledge Based Optimization Algorithm", 2020 International Conference on Computational Performance Evaluation (ComPE), pp. 158 - 162, 2-4 July 2020, Submitted. Abstract
n/a
Journal Article
Cheng, L., Y. Wang, C. Wang, A. W. Mohamed, and T. Xiao, "Adaptive Differential Evolution Based on Successful Experience Information", IEEE Access, vol. 8, pp. 164611 - 164636, 2020. Abstract
n/a
Mohamed, A. W., and A. K. Mohamed, Adaptive guided differential evolution algorithm with novel mutation for numerical optimization, , vol. 10, issue 2, pp. 253 - 277, 2019. AbstractWebsite

This paper presents adaptive guided differential evolution algorithm (AGDE) for solving global numerical optimization problems over continuous space. In order to utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and the bottom 100p% individuals in the current population of size NP while the third vector is selected randomly from the middle [NP-2(100p %)] individuals. This new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Besides, a novel and effective adaptation scheme is used to update the values of the crossover rate to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of AGDE, Numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30, and 50 dimensions, including a comparison with classical DE schemes and some recent evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, AGDE is significantly better than, or at least comparable to state-of-the-art approaches.

Wagdy Mohamed, A., H. Z. Sabry, and A. Farhat, "Advanced Differential Evolution algorithm for global numerical optimization", IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE), pp. 156–161, 2011. Abstract
n/a
Mohamed, A. W., H. Z. Sabry, and M. Khorshid, "An alternative differential evolution algorithm for global optimization", Journal of advanced research, vol. 3, no. 2: Elsevier, pp. 149–165, 2012. Abstract
n/a
Agrawal, P., T. Ganesh, and A. W. Mohamed, Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection, , vol. 25, issue 14, pp. 9505 - 9528, 2021. AbstractWebsite

The gaining sharing knowledge based optimization algorithm (GSK) is recently developed metaheuristic algorithm, which is based on how humans acquire and share knowledge during their life-time. This paper investigates a modified version of the GSK algorithm to find the best feature subsets. Firstly, it represents a binary variant of GSK algorithm by employing a probability estimation operator (Bi-GSK) on the two main pillars of GSK algorithm. And then, the chaotic maps are used to enhance the performance of the proposed algorithm. Ten different types of chaotic maps are considered to adapt the parameters of the GSK algorithm that make a proper balance between exploration and exploitation and save the algorithm from premature convergence. To check the performance of proposed approaches of GSK algorithm, twenty-one benchmark datasets are taken from the UCI repository for feature selection. The performance is measured by calculating different type of measures, and several metaheuristic algorithms are adopted to compare the obtained results. The results indicate that Chebyshev chaotic map shows the best result among all chaotic maps which improve the performance accuracy and convergence rate of the original algorithm. Moreover, it outperforms the other metaheuristic algorithms in terms of efficiency, fitness value and the minimum number of selected features.

Mohamed, A. W., and H. Z. Sabry, "Constrained optimization based on modified differential evolution algorithm", Information Sciences, vol. 194: Elsevier, pp. 171–208, 2012. Abstract
n/a
Mohamed, A. W., A. A. Hadi, and A. K. Mohamed, "Differential Evolution Mutations: Taxonomy, Comparison and Convergence Analysis", IEEE Access, vol. 9, pp. 68629 - 68662, 2021. Abstract
n/a
Mohamed, A. W., and A. S. Almazyad, "Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems", Applied Computational Intelligence and Soft Computing, vol. 2017: Hindawi, pp. 7974218, 2017. AbstractWebsite

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.

Mohamed, A. W., An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems, , vol. 8, issue 3, pp. 989 - 1007, 2017. AbstractWebsite

In this paper, an efficient modified Differential Evolution algorithm, named EMDE, is proposed for solving constrained non-linear integer and mixed-integer global optimization problems. In the proposed algorithm, new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best,better and the worst individuals among the three randomly selected vectors is introduced. The proposed novel approach to mutation operator is shown to enhance the global and local search capabilities and to increase the convergence speed of the new algorithm compared with basic DE. EMDE uses Deb’s constraint handling technique based on feasibility and the sum of constraints violations without any additional parameters. In order to evaluate and analyze the performance of EMDE, Numerical experiments on a set of 18 test problems with different features, including a comparison with basic DE and four state-of-the-art evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and efficiency, EMDE is significantly better than other five algorithms in solving these test problems. Furthermore, EMDE exhibits good performance in solving two high-dimensional problems, and it finds better solutions than the known ones. Hence, EMDE is superior to the compared algorithms.

Mohamed, A. W., A. K. Mohamed, E. Z. Elfeky, and M. Saleh, "Enhanced Directed Differential Evolution Algorithm for Solving Constrained Engineering Optimization Problems", International Journal of Applied Metaheuristic Computing (IJAMC), vol. 10, issue 1, Hershey, PA, USA, IGI Global, pp. 1 - 28, 2019. AbstractWebsite

The performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.

Wu, W., H. Ouyang, A. W. Mohamed, C. Zhang, and S. Li, Enhanced harmony search algorithm with circular region perturbation for global optimization problems, , vol. 50, issue 3, pp. 951 - 975, 2020. AbstractWebsite

To improve the searching effectiveness of the harmony search (HS) algorithm, an enhanced harmony search algorithm with circular region perturbation (EHS_CRP) is proposed in this paper. In the EHS_CRP algorithm, a global and local dimension selection strategy is designed to accelerate the search speed of the algorithm. A selection learning operator based on the global and local mean level is proposed to improve the balance between exploration and exploitation. Circular region perturbation is employed to avoid the algorithm stagnation and get a better exploration region. To assess performance, the proposed algorithm is compared with 10 state-of-the-art swarm intelligent approaches in a large set of global optimization problems. The simulation results confirm that EHS_CRP has a significant advantage in terms of accuracy, convergence speed, stability and robustness. Moreover, EHS_CRP performs better than other tested methods in engineering design optimization problems. Thus, the EHS_CRP algorithm is a viable and reliable alternative for some difficult and multidimensional real-world problems.