Publications

Export 48 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
X
Xiong, G., L. Li, A. W. Mohamed, X. Yuan, and J. Zhang, A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm, , vol. 7, pp. 3286 - 3301, 2021. AbstractWebsite

For the solar photovoltaic (PV) system to operate efficiently, it is necessary to effectively establish an equivalent model of PV cell and extract the relevant unknown model parameters accurately. This paper introduces a new metaheuristic algorithm, i.e., gaining-sharing knowledge based algorithm (GSK) to solve the solar PV model parameter extraction problem. This algorithm simulates the process of knowledge acquisition and sharing in the human life cycle and is with strong competitiveness in solving optimization problems. It includes two significant phases. The first phase is the beginner–intermediate or junior acquisition and sharing stage, and the second phase is the intermediate–expert or senior acquisition and sharing stage. In order to verify the effectiveness of GSK, it is applied to five PV models including the single diode model, double diode model, and three PV modules. The influence of population size on the algorithm performance is empirically investigated. Besides, it is further compared with some other excellent metaheuristic algorithms including basic algorithms and advanced algorithms. Among the five PV models, the root mean square error values between the measured data and the calculated data of GSK are 9.8602E−04 ± 2.18E−17, 9.8280E−04 ± 8.72E−07, 2.4251E−03 ± 1.04E−09, 1.7298E−03 ± 6.25E−18, and 1.6601E−02 ± 1.44E−16, respectively. The results show that GSK has overall better robustness, convergence, and accuracy.

W
Wu, W., H. Ouyang, A. W. Mohamed, C. Zhang, and S. Li, Enhanced harmony search algorithm with circular region perturbation for global optimization problems, , vol. 50, issue 3, pp. 951 - 975, 2020. AbstractWebsite

To improve the searching effectiveness of the harmony search (HS) algorithm, an enhanced harmony search algorithm with circular region perturbation (EHS_CRP) is proposed in this paper. In the EHS_CRP algorithm, a global and local dimension selection strategy is designed to accelerate the search speed of the algorithm. A selection learning operator based on the global and local mean level is proposed to improve the balance between exploration and exploitation. Circular region perturbation is employed to avoid the algorithm stagnation and get a better exploration region. To assess performance, the proposed algorithm is compared with 10 state-of-the-art swarm intelligent approaches in a large set of global optimization problems. The simulation results confirm that EHS_CRP has a significant advantage in terms of accuracy, convergence speed, stability and robustness. Moreover, EHS_CRP performs better than other tested methods in engineering design optimization problems. Thus, the EHS_CRP algorithm is a viable and reliable alternative for some difficult and multidimensional real-world problems.

Wagdy Mohamed, A., H. Z. Sabry, and A. Farhat, "Advanced Differential Evolution algorithm for global numerical optimization", IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE), pp. 156–161, 2011. Abstract
n/a
S
Said Ali Hassan, Khalid Alnowibet, P. A. A. W. M., "Optimum Location of Field Hospitals for COVID-19: A Nonlinear Binary Metaheuristic Algorithm", Computers, Materials & Continua, vol. 68, no. 1, pp. 1183–1202, 2021. AbstractWebsite

Determining the optimum location of facilities is critical in many fields, particularly in healthcare. This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019 (COVID-19) pandemic. The used model is the most appropriate among the three most common location models utilized to solve healthcare problems (the set covering model, the maximal covering model, and the P-median model). The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints. The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction. The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt. In this case study, a discrete binary gaining–sharing knowledge-based optimization (DBGSK) algorithm is proposed. The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life. The DBGSK algorithm mainly depends on two junior and senior binary stages. These two stages enable DBGSK to explore and exploit the search space efficiently and effectively, and thus it can solve problems in binary space.

Said Ali Hassan, Khalid Alnowibet, P. A. A. W. M., "Managing Delivery of Safeguarding Substances as a Mitigation Against Outbreaks of Pandemics", Computers, Materials & Continua, vol. 68, no. 1, pp. 1161–1181, 2021. AbstractWebsite

The optimum delivery of safeguarding substances is a major part of supply chain management and a crucial issue in the mitigation against the outbreak of pandemics. A problem arises for a decision maker who wants to optimally choose a subset of candidate consumers to maximize the distributed quantities of the needed safeguarding substances within a specific time period. A nonlinear binary mathematical programming model for the problem is formulated. The decision variables are binary ones that represent whether to choose a specific consumer, and design constraints are formulated to keep track of the chosen route. To better illustrate the problem, objective, and problem constraints, a real application case study is presented. The case study involves the optimum delivery of safeguarding substances to several hospitals in the Al-Gharbia Governorate in Egypt. The hospitals are selected to represent the consumers of safeguarding substances, as they are the first crucial frontline for mitigation against a pandemic outbreak. A distribution truck is used to distribute the substances from the main store to the hospitals in specified required quantities during a given working shift. The objective function is formulated in order to maximize the total amount of delivered quantities during the specified time period. The case study is solved using a novel Discrete Binary Gaining Sharing Knowledge-based Optimization algorithm (DBGSK), which involves two main stages: discrete binary junior and senior gaining and sharing stages. DBGSK has the ability of finding the solutions of the introduced problem, and the obtained results demonstrate robustness and convergence toward the optimal solutions.

O
Opara, K. R., A. A. Hadi, and A. W. Mohamed, "Parametrized Benchmarking: An Outline of the Idea and a Feasibility Study", Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, Association for Computing Machinery, pp. 197–198, 2020. Abstract

Performance of real-parameter global optimization algorithms is typically evaluated using sets of test problems. We propose a new methodology of extending these benchmarks to obtain a more balanced experimental design. This can be done by selectively removing some of the transformations originally used in the definitions of the test problems such as rotation, scaling, or translation. In this way, we obtain several variants of each problem parametrized by interpretable, high-level characteristics. These binary parameters are used as predictors in a multiple regression model explaining the algorithmic performance. Linear models allow for the attribution of strength and direction of performance changes to particular characteristics of the optimization problems and thus provide insight into the underlying mechanics of the investigated algorithms. The proposed ideas are illustrated with an application example showing the feasibility of the new benchmark. Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic performance and the optimization problems. The overall goal is to systematize a method of matching problems to algorithms and in this way constructively address the limitations imposed by the no free lunch theorem.

N
Nomer, H. A. A., K. A. Alnowibet, A. Elsayed, and A. W. Mohamed, "Neural Knapsack: A Neural Network Based Solver for the Knapsack Problem", IEEE Access, vol. 8, pp. 224200 - 224210, 2020. Abstract
n/a
M
Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh, "Solving Constrained Non-linear Integer and Mixed-Integer Global Optimization Problems Using Enhanced Directed Differential Evolution Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 327 - 349, 2019. Abstract

This paper proposes an enhanced modified Differential Evolution algorithm (MI-EDDE) to solve global constrained optimization problems that consist of mixed/non-linear integer variables. The MI-EDDE algorithm, which is based on the constraints violation, introduces a new mutation rule that sort all individuals ascendingly due to their constraint violations (cv) value and then the population is divided into three clusters (best, better and worst) with sizes 100p%, (NP-2) * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). MI-EDDE selects three random individuals, one of each partition to implement the mutation process. This new mutation scheme shown to enhance the global and local search capabilities and increases the convergence speed. Eighteen test problems with different features are tested to evaluate the performance of MI-EDDE, and a comparison is made with four state-of-the-art evolutionary algorithms. The results show superiority of MI-EDDE to the four algorithms in terms of the quality, efficiency and robustness of the final solutions. Moreover, MI-EDDE shows a superior performance in solving two high dimensional problems and finding better solutions than the known optimal solution.

Mohamed, A. W., "An Improved Differential Evolution Algorithm with Triangular Mutation for Global Numerical Optimization", Computers & Industrial Engineering, vol. 85: Elsevier, pp. 359–375, 2015. Abstract
n/a
Mohamed, A. W., H. F. Abutarboush, A. A. Hadi, and A. K. Mohamed, "Gaining-Sharing Knowledge Based Algorithm With Adaptive Parameters for Engineering Optimization", IEEE Access, vol. 9, pp. 65934 - 65946, 2021. Abstract
n/a
Mohamed, A. W., Solving stochastic programming problems using new approach to Differential Evolution algorithm, , vol. 18, issue 2, pp. 75 - 86, 2017. AbstractWebsite

This paper presents a new approach to Differential Evolution algorithm for solving stochastic programming problems, named DESP. The proposed algorithm introduces a new triangular mutation rule based on the convex combination vector of the triangle and the difference vector between the best and the worst individuals among the three randomly selected vectors. The proposed novel approach to mutation operator is shown to enhance the global and local search capabilities and to increase the convergence speed of the new algorithm compared with conventional DE. DESP uses Deb’s constraint handling technique based on feasibility and the sum of constraint violations without any additional parameters. Besides, a new dynamic tolerance technique to handle equality constraints is also adopted. Two models of stochastic programming (SP) problems are considered: Linear Stochastic Fractional Programming Problems and Multi-objective Stochastic Linear Programming Problems. The comparison results between the DESP and basic DE, basic particle swarm optimization (PSO), Genetic Algorithm (GA) and the available results from where it is indicated that the proposed DESP algorithm is competitive with, and in some cases superior to, other algorithms in terms of final solution quality, efficiency and robustness of the considered problems in comparison with the quoted results in the literature.

Mohamed, A. W., and H. Z. Sabry, "Constrained optimization based on modified differential evolution algorithm", Information Sciences, vol. 194: Elsevier, pp. 171–208, 2012. Abstract
n/a
Mohamed, A. W., A. A. Hadi, and A. K. Mohamed, Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm, , vol. 11, issue 7, pp. 1501 - 1529, 2020. AbstractWebsite

This paper proposes a novel nature-inspired algorithm called Gaining Sharing Knowledge based Algorithm (GSK) for solving optimization problems over continuous space. The GSK algorithm mimics the process of gaining and sharing knowledge during the human life span. It is based on two vital stages, junior gaining and sharing phase and senior gaining and sharing phase. The present work mathematically models these two phases to achieve the process of optimization. In order to verify and analyze the performance of GSK, numerical experiments on a set of 30 test problems from the CEC2017 benchmark for 10, 30, 50 and 100 dimensions. Besides, the GSK algorithm has been applied to solve the set of real world optimization problems proposed for the IEEE-CEC2011 evolutionary algorithm competition. A comparison with 10 state-of-the-art and recent metaheuristic algorithms are executed. Experimental results indicate that in terms of robustness, convergence and quality of the solution obtained, GSK is significantly better than, or at least comparable to state-of-the-art approaches with outstanding performance in solving optimization problems especially with high dimensions.

Mohamed, A. W., and P. N. Suganthan, Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation, , vol. 22, issue 10, pp. 3215 - 3235, 2018. AbstractWebsite

This paper presents enhanced fitness-adaptive differential evolution algorithm with novel mutation (EFADE) for solving global numerical optimization problems over continuous space. A new triangular mutation operator is introduced. It is based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better and the worst individuals among the three randomly selected vectors. Triangular mutation operator helps the search for better balance between the global exploration ability and the local exploitation tendency as well as enhancing the convergence rate of the algorithm through the optimization process. Besides, two novel, effective adaptation schemes are used to update the control parameters to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of EFADE, numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30 and 50 dimensions, including a comparison with 12 recent DE-based algorithms and six recent evolutionary algorithms, are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, EFADE is significantly better than, or at least comparable to state-of-the-art approaches with outstanding performance.

Mohamed, A. W., "A Novel Discrete Binary Differential Evolution Algorithm", Aloy Journal of Soft Computing and Applications, vol. 2, no. 1: Aloy Publisher, 2014. Abstract
n/a
Mohamed, A. K., and A. W. Mohamed, "Real-Parameter Unconstrained Optimization Based on Enhanced AGDE Algorithm", Machine Learning Paradigms: Theory and Application, Cham, Springer International Publishing, pp. 431 - 450, 2019. Abstract

Adaptive guided differential evolution algorithm (AGDE) is a differential evolution (DE) algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP − 2 * 100% and 100% respectively. where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems. The performance of the proposed algorithm is evaluated using CEC2013 benchmarks and the results are compared with the state-of-art DE and non-DE algorithms, the results showed a great competitiveness for the proposed algorithm over the other algorithms, and the original AGDE.

Mohamed, A. W., A. A. Hadi, and A. K. Mohamed, "Differential Evolution Mutations: Taxonomy, Comparison and Convergence Analysis", IEEE Access, vol. 9, pp. 68629 - 68662, 2021. Abstract
n/a
Mohamed, A. W., H. Z. Sabry, and M. Khorshid, "An alternative differential evolution algorithm for global optimization", Journal of advanced research, vol. 3, no. 2: Elsevier, pp. 149–165, 2012. Abstract
n/a
Mohamed, A. W., Solving large-scale global optimization problems using enhanced adaptive differential evolution algorithm, , vol. 3, issue 4, pp. 205 - 231, 2017. AbstractWebsite

This paper presents enhanced adaptive differential evolution (EADE) algorithm for solving high-dimensional optimization problems over continuous space. To utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and bottom 100p% individuals in the current population of size NP, while the third vector is selected randomly from the middle [NP-2(100p%)] individuals. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the only one of the two mutation rules is applied with the probability of 0.5. This new mutation scheme helps to maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which, in turn, can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 7 and 20 standard high-dimensional benchmark numerical optimization problems for both the IEEE CEC-2008 and the IEEE CEC-2010 Special Session and Competition on Large-Scale Global Optimization. The comparison results between EADE and its version and the other state-of-art algorithms that were all tested on these test suites indicate that the proposed algorithm and its version are highly competitive algorithms for solving large-scale global optimization problems.

Mohamed, A. W., and A. K. Mohamed, Adaptive guided differential evolution algorithm with novel mutation for numerical optimization, , vol. 10, issue 2, pp. 253 - 277, 2019. AbstractWebsite

This paper presents adaptive guided differential evolution algorithm (AGDE) for solving global numerical optimization problems over continuous space. In order to utilize the information of good and bad vectors in the DE population, the proposed algorithm introduces a new mutation rule. It uses two random chosen vectors of the top and the bottom 100p% individuals in the current population of size NP while the third vector is selected randomly from the middle [NP-2(100p %)] individuals. This new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation abilities for searching process of the DE. Besides, a novel and effective adaptation scheme is used to update the values of the crossover rate to appropriate values without either extra parameters or prior knowledge of the characteristics of the optimization problem. In order to verify and analyze the performance of AGDE, Numerical experiments on a set of 28 test problems from the CEC2013 benchmark for 10, 30, and 50 dimensions, including a comparison with classical DE schemes and some recent evolutionary algorithms are executed. Experimental results indicate that in terms of robustness, stability and quality of the solution obtained, AGDE is significantly better than, or at least comparable to state-of-the-art approaches.

Mohamed, A. K., A. A. Hadi, and A. W. Mohamed, "Generalized Adaptive Differential Evolution algorithm for Solving CEC 2020 Benchmark Problems", 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 391 - 396, 24-26 Oct. 2020, Submitted. Abstract
n/a
Mohamed, A. W., A. A. Hadi, and K. M. Jambi, Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization, , vol. 50, pp. 100455, 2019. AbstractWebsite

Proposing new mutation strategies to improve the optimization performance of differential evolution (DE) is an important research study. Therefore, the main contribution of this paper goes in three directions: The first direction is introducing a less greedy mutation strategy with enhanced exploration capability, named DE/current-to-ord_best/1 (ord stands for ordered) or ord_best for short. In the second direction, we introduce a more greedy mutation strategy with enhanced exploitation capability, named DE/current-to-ord_pbest/1 (ord_pbest for short). Both of the proposed mutation strategies are based on ordering three selected vectors from the current generation to perturb the target vector, where the directed differences are used to mimic the gradient decent behavior to direct the search toward better solutions. In ord_best, the three vectors are selected randomly to enhance the exploration capability of the algorithm. On the other hand, ord_pbest is designed to enhance the exploitation capability where two vectors are selected randomly and the third is selected from the global p best vectors. Based on the proposed mutation strategies, ord_best and ord_pbest, two DE variants are introduced as EDE and EBDE, respectively. The third direction of our work is a hybridization framework. The proposed mutations can be combined with DE family algorithms to enhance their search capabilities on difficult and complicated optimization problems. Thus, the proposed mutations are incorporated into SHADE and LSHADE to enhance their performance. Finally, in order to verify and analyze the performance of the proposed mutation strategies, numerical experiments were conducted using CEC2013 and CEC2017 benchmarks. The performance was also evaluated using CEC2010 designed for Large-Scale Global Optimization. Experimental results indicate that in terms of robustness, stability, and quality of the solution obtained, both mutation strategies are highly competitive, especially as the dimension increases.

Mohamed, A. W., A. A. Hadi, A. K. Mohamed, and N. H. Awad, "Evaluating the Performance of Adaptive GainingSharing Knowledge Based Algorithm on CEC 2020 Benchmark Problems", 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1 - 8, 19-24 July 2020, Submitted. Abstract
n/a
Tourism