Publications

Export 56 results:
Sort by: Author Title Type [ Year  (Asc)]
2021
Agrawal, P., T. Ganesh, and A. W. Mohamed, Solving knapsack problems using a binary gaining sharing knowledge-based optimization algorithm, , 2021. AbstractWebsite

This article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.

Hassan, S. A., P. Agrawal, T. Ganesh, and A. W. Mohamed, "A Travelling Disinfection-Man Problem (TDP) for COVID-19: A Nonlinear Binary Constrained Gaining-Sharing Knowledge-Based Optimization Algorithm", Intelligent Data Analysis for COVID-19 Pandemic, Singapore, Springer Singapore, pp. 291 - 318, 2021. Abstract

An improved scheduling the disinfection process of the new coronavirus (COVID-19) is introduced. The scheduling aims at achieving the best utilization of the available day time, which is calculated as the total disinfection time minus the total loss travelling time. In this regard, a new application problem is presented, which is called a travelling disinfection-man problem (TDP). The new problem (TDP) in network optimization resemble somehow the famous travelling salesman problems (TSP) but with basic distinct variations where a disinfection group is likely to select a route to reach a subset of predetermined places to be disinfected with the most utilization of the available day working hours. A nonlinear binary model is introduced with a detailed real application case study involving the improving the scheduling of coronavirus disinfection process for five contaminated faculties in Ain Shams University in Cairo, and the case study is solved using a novel discrete binary gaining-sharing knowledge-based optimization algorithm (DBGSK).

Submitted
Mohamed, A. W., A. A. Hadi, A. K. Mohamed, and N. H. Awad, "Evaluating the Performance of Adaptive GainingSharing Knowledge Based Algorithm on CEC 2020 Benchmark Problems", 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1 - 8, 19-24 July 2020, Submitted. Abstract
n/a
Agrawal, P., T. Ganesh, and A. W. Mohamed, "Solution of Uncertain Solid Transportation Problem by Integer Gaining Sharing Knowledge Based Optimization Algorithm", 2020 International Conference on Computational Performance Evaluation (ComPE), pp. 158 - 162, 2-4 July 2020, Submitted. Abstract
n/a
Mohamed, A. K., A. A. Hadi, and A. W. Mohamed, "Generalized Adaptive Differential Evolution algorithm for Solving CEC 2020 Benchmark Problems", 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 391 - 396, 24-26 Oct. 2020, Submitted. Abstract
n/a
Mohamed, A. W., A. A. Hadi, A. M. Fattouh, and K. M. Jambi, "LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems", 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 145 - 152, 5-8 June 2017, Submitted. Abstract
n/a