Mohamed, A. K., A. W. Mohamed, E. Z. Elfeky, and M. Saleh,
"Enhancing AGDE Algorithm Using Population Size Reduction for Global Numerical Optimization",
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Cham, Springer International Publishing, pp. 62 - 72, 2018.
AbstractAdaptive guided differential evolution algorithm (AGDE) is a DE algorithm that utilizes the information of good and bad vectors in the population, it introduced a novel mutation rule in order to balance effectively the exploration and exploitation tradeoffs. It divided the population into three clusters (best, better and worst) with sizes 100p%, NP-2 * 100p% and 100p% respectively. Where p is the proportion of the partition with respect to the total number of individuals in the population (NP). AGDE selects three random individuals, one of each partition to implement the mutation process. Besides, a novel adaptation scheme was proposed in order to update the value of crossover rate without previous knowledge about the characteristics of the problems. This paper introduces enhanced AGDE (EAGDE) with non-linear population size reduction, which gradually decreases the population size according to a non-linear function. Moreover, a newly developed rule developed to determine the initial population size, that is related to the dimensionality of the problems.
Opara, K. R., A. A. Hadi, and A. W. Mohamed,
"Parametrized Benchmarking: An Outline of the Idea and a Feasibility Study",
Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, New York, NY, USA, Association for Computing Machinery, pp. 197–198, 2020.
AbstractPerformance of real-parameter global optimization algorithms is typically evaluated using sets of test problems. We propose a new methodology of extending these benchmarks to obtain a more balanced experimental design. This can be done by selectively removing some of the transformations originally used in the definitions of the test problems such as rotation, scaling, or translation. In this way, we obtain several variants of each problem parametrized by interpretable, high-level characteristics. These binary parameters are used as predictors in a multiple regression model explaining the algorithmic performance. Linear models allow for the attribution of strength and direction of performance changes to particular characteristics of the optimization problems and thus provide insight into the underlying mechanics of the investigated algorithms. The proposed ideas are illustrated with an application example showing the feasibility of the new benchmark. Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic performance and the optimization problems. The overall goal is to systematize a method of matching problems to algorithms and in this way constructively address the limitations imposed by the no free lunch theorem.