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Abstract. We present several new sufficient conditions for Hyers–Ulam and
Hyers–Ulam–Rassias stability of first-order linear dynamic equations for func-
tions defined on a time scale with values in a Banach space.

1. Preliminaries and Introduction

In 1940, Ulam [28] proposed to “give conditions in order for a linear mapping
near an approximately linear mapping to exist”. The case of approximately additive
mappings was solved by Hyers [12], who proved that the Cauchy equation is stable
in Banach spaces. Since then, this type of stability, founded by Ulam and Hyers,
is famed for Hyers–Ulam stability. There appeared hundreds of papers concerning
Hyers–Ulam stability, due to its applications in control theory, numerical analy-
sis, and other areas of applied mathematics. In 1978, Rassias [21] extended the
Hyers–Ulam stability concept and called it Hyers–Ulam–Rassias stability. For more
details, we refer the reader to the monograph of Jung [14]. In 1998, Alsina and
Ger [1] were the first authors to investigate Hyers–Ulam stability of the differential
equation

ψ′ − ψ = 0

and to obtain a Hyers–Ulam stability constant 3 on a real interval. Hyers–Ulam
stability of linear differential equations of first order was also investigated in [13,
22, 23, 29]. Generalizations of these results were offered by Miura and others
in [17–19, 27]. Popa proved Hyers–Ulam stability of linear recurrence equations
with constant coefficients [20]. For more studies concerning difference equations,
we also refer to [4,5,7,10,11]. Recently, several articles have studied Hyers–Ulam
stability of dynamic equations on time scales [2,3,6,15,16,24,26,30].
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In this paper, we investigate new sufficient conditions for Hyers–Ulam and
Hyers–Ulam–Rassias stability of first-order linear dynamic equations on time scales
of the form

(1.1) ψ∆(t) + ℘(t)ψ(t) = f(t), t ∈ Iκ,

where I = [a, b] ∩ T with a time scale T ⊂ R, a, b ∈ T, a < b, ℘ ∈ Crd(I,R),
f ∈ Crd(I,X), and X is a Banach space. Our results depend basically on finding
an equivalent integral equation to (1.1). The main result of the paper is a sufficient
condition for (1.1) to have Hyers–Ulam stability, namely, the existence of a unique
solution ψ of (1.1) satisfying the initial condition ψ(a) = x0 for any initial value
x0 ∈ X.

For the terminology and notations used here, we refer the reader to Bohner and
Peterson [8, 9]. Here, we only recall the dynamic version of Gronwall’s inequality,
as it is an essential tool in our investigations.

Theorem 1.1 (See [8, Theorem 6.4]). Let be given functions y, f ∈ Crd(I,R)
and p ∈ Crd(I, [0,∞)). Then

y(t) 6 f(t) +

∫ t

a

y(s)p(s)∆s for all t ∈ I

implies

y(t) 6 f(t) +

∫ t

a

ep(t, σ(s))f(s)p(s)∆s for all t ∈ I.

In this paper, we denote the norm on the Banach space X by ‖·‖, and for a
bounded function f : I → X, we also use the notation ‖f‖∞ = supt∈I ‖f(t)‖.

2. An Existence and Uniqueness Result

Let ℘ ∈ Crd(I,R). It is well known that if ℘ is regressive, i.e., 1 +µ(t)℘(t) 6= 0
for all t ∈ I, then (1.1) has a unique solution ψ satisfying the initial condition
ψ(a) = x0, for every x0 ∈ X (see [8, §8.2]). Another sufficient condition for the
existence of a unique solution of initial value problems involving (1.1) is established
in this section. We begin by the following lemma.

Lemma 2.1. ψ solves (1.1) if and only if ψ satisfies the integral equation

(2.1) ψ(t) = x0 −
∫ t

a

(℘(s)ψ(s) − f(s))∆s for all t ∈ I

for some constant x0 ∈ X.

Proof. If ψ satisfies (1.1), then we can integrate ψ∆ from a to t to see that
(2.1) holds with x0 = ψ(a). Conversely, if ψ satisfies (2.1), then we can differentiate
ψ to see that (1.1) holds. �

Corollary 2.1. For x0 ∈ X, (1.1) has at most one solution ψ satisfying

ψ(a) = x0.
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Proof. Let x0 ∈ X. Assume that ψ1 and ψ2 are solutions of (1.1) with
ψ1(a) = ψ2(a) = x0. Then, by Lemma 2.1, both ψ1 and ψ2 satisfy (2.1). This
implies

‖ψ1(t) − ψ2(t)‖ 6

∫ t

a

|℘(s)| ‖ψ1(s) − ψ2(s)‖ ∆s for all t ∈ I.

Now we let in Gronwall’s inequality, Theorem 1.1, y = ‖ψ1 − ψ2‖, f = 0, and
p = |℘|. Hence, the assumptions in Theorem 1.1 are satisfied, and

y(t) 6 f(t) +

∫ t

a

y(s)p(s)∆s for all t ∈ I

holds. Thus, by Theorem 1.1,

y(t) 6 f(t) +

∫ t

a

ep(t, σ(s))f(s)p(s)∆s = 0 for all t ∈ I,

i.e., ‖ψ1(t) − ψ2(t)‖ 6 0 for all t ∈ I, so ψ1 = ψ2. �

Theorem 2.1. Assume that there exists α ∈ (0, 1) such that

(2.2)

∫ t

a

|℘(s)| ∆s 6 α for all t ∈ I.

If x0 ∈ X, then (1.1) has a unique solution ψ satisfying ψ(a) = x0.

Proof. Fix x0 ∈ X. Define the operator T : Crd(I,X) → Crd(I,X) by

Tψ(t) := x0 −
∫ t

a

(℘(s)ψ(s) − f(s))∆s, t ∈ I.

For ψ1, ψ2 ∈ C(I,X), we have

‖Tψ1(t) − Tψ2(t)‖ 6 ‖ψ1 − ψ2‖∞

∫ t

a

|℘(s)| ∆s 6 α ‖ψ1 − ψ2‖∞ , t ∈ I,

Hence, ‖Tψ1 − Tψ2‖∞ 6 α ‖ψ1 − ψ2‖∞, so T is a contraction. Therefore, T has
a unique fixed point ψ, which is the unique solution of (2.1) satisfying ψ(a) = x0.
Thus, by Lemma 2.1, ψ is the unique solution of (1.1) satisfying ψ(a) = x0. �

Remark 2.1. Assume T is a discrete time scale. We can see that if there exists
α ∈ (0, 1) such that (2.2) holds, then ℘ is regressive, and the converse is not true.
Indeed, if ℘ is nonregressive, then there exists t0 ∈ Iκ such that ℘(t0)µ(t0) = −1.
We have

∫ b

a

|℘(s)| ∆s =
∑

t∈Iκ

|℘(t)|µ(t) > |℘(t0)|µ(t0) = 1.

This is a contradiction. To see that the converse is not true, the function ℘(t) ≡ 1
is regressive on N0, but (2.2) does not hold for any α ∈ (0, 1).
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3. Hyers–Ulam Stability

In this section, we assume that ℘ ∈ Crd(I,R) and f ∈ Crd(I,X). We investigate
Hyers–Ulam stability of (1.1). First, we recall the concept of Hyers–Ulam stability,
see [3, Definition 3.1].

Definition 3.1 (Hyers–Ulam Stability). We say that (1.1) has Hyers–Ulam
stability if there exists a constant L > 0, a so-called HUS constant, with the
following property. For any ε > 0, if ψ ∈ C1

rd(I,X) is such that
∥

∥ψ∆(t) + ℘(t)ψ(t) − f(t)
∥

∥ 6 ε for all t ∈ Iκ,

then there exists a solution φ : I → X of (1.1) such that ‖ψ(t) − φ(t)‖ 6 Lε for all
t ∈ I.

The following result establishes a new sufficient condition for Hyers–Ulam sta-
bility of (1.1). We introduce the assumption

(H) For any x0 ∈ X, (1.1) has a solution φ satisfying φ(a) = x0.

Theorem 3.1. If (H) holds, then (1.1) has Hyers–Ulam stability with HUS

constant L := (b − a)e|℘|(b, a).

Proof. Note that |℘| ∈ Crd(I, [0,∞)), and so L is well defined and L > 0.
Let ε > 0. Suppose ψ ∈ C1

rd(I,X) is such that

(3.1)
∥

∥ψ∆(t) + ℘(t)ψ(t) − f(t)
∥

∥ 6 ε for all t ∈ Iκ.

Defining h(t) := ψ∆(t) + ℘(t)ψ(t) − f(t), we see that h ∈ Crd(I,X). Moreover, ψ
satisfies the equation ψ∆(t) + ℘(t)ψ(t) = f(t) + h(t) for all t ∈ I. Let x0 = ψ(a).
By Lemma 2.1,

(3.2) ψ(t) = x0 −
∫ t

a

(℘(s)ψ(s) − (f(s) + h(s)))∆s for all t ∈ I.

By (H), there exists a solution φ of (1.1) satisfying φ(a) = x0. Equivalently, by
Lemma 2.1,

(3.3) φ(t) = x0 −
∫ t

a

(℘(s)φ(s) − f(s))∆s for all t ∈ I.

Subtracting (3.3) from (3.2), we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ =

∥

∥

∥

∥

∫ t

a

h(s)∆s+

∫ t

a

℘(s)(φ(s) − ψ(s))∆s

∥

∥

∥

∥

6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

(3.1)
6 ε(t− a) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6 ε(b− a) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s.
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Thus, by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6 ε(b− a) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| ε(b− a)∆s

= ε(b− a)

(

1 +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| ∆s

)

= ε(b− a)
(

1 + e|℘|(t, a) − e|℘|(t, t)
)

= (b− a)e|℘|(t, a)ε 6 (b− a)e|℘|(b, a)ε = Lε,

where we used [8, Theorem 2.39] to evaluate the integral, the fact that e|℘|(t, t) = 1,
and the nondecreasing nature of e|℘|(·, a), which follows from the fact that the
derivative of e|℘|(t, s) with respect to t (for fixed s) is |℘(t)| e|℘|(t, s). Therefore,
(1.1) indeed has Hyers–Ulam stability. �

Remark 3.1. Note that Theorem 3.1 coincides with the result given in [25,
Corollary 2.3] in case of T = R, where the constant L is found as

L = (b− a) exp

(
∫ b

a

|℘(t)| dt

)

.

Since a regressive equation always has a unique solution satisfying any initial
condition, we get the following result.

Theorem 3.2. If ℘ is regressive, then (1.1) has Hyers–Ulam stability.

Moreover, combining Theorem 2.1 and Theorem 3.1 yields the following new
sufficient condition for Hyers–Ulam stability of (1.1).

Theorem 3.3. If there exists α ∈ (0, 1) such that (2.2) holds, then (1.1) has

Hyers–Ulam stability.

4. Hyers–Ulam–Rassias Stability

We introduce Hyers–Ulam–Rassias stability of (1.1) as follows.

Definition 4.1 (Hyers–Ulam–Rassias Stability). Let Ω be a family of positive
rd-continuous functions defined on I. We say that (1.1) has Hyers–Ulam–Rassias
stability of type Ω if there exists a constant L > 0, a so-called HURSΩ constant,
with the following property. For any ω ∈ Ω, if ψ ∈ C1

rd(I,X) is such that
∥

∥ψ∆(t) + ℘(t)ψ(t) − f(t)
∥

∥ 6 ω(t) for all t ∈ Iκ,

then there exists a solution φ : I → X of (1.1) such that ‖ψ(t) − φ(t)‖ 6 Lω(t) for
all t ∈ I.

The following results are concerned with Hyers–Ulam–Rassias stability.

Theorem 4.1. Let Ω∗:= {ω ∈ Crd(I, (0,∞)) : ω is nondecreasing}. If (H)
holds, then (1.1) has Hyers–Ulam–Rassias stability of type Ω∗ with HURSΩ∗ con-

stant L := (b− a)e|℘|(b, a).
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Proof. As before, L is well defined and L > 0. Let ε > 0. Suppose that
ψ ∈ C1

rd(I,X) satisfies

(4.1)
∥

∥ψ∆(t) + ℘(t)ψ(t) − f(t)
∥

∥ 6 ω(t) for all t ∈ Iκ.

Defining h(t) := ψ∆(t) +℘(t)ψ(t) − f(t), we see that h ∈ Crd(I,X). Let x0 = ψ(a).
By Lemma 2.1, (3.2) holds. By (H), there exists a solution φ of (1.1) satisfying
φ(a) = x0. Equivalently, by Lemma 2.1, (3.3) holds. Subtracting (3.3) from (3.2),
we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

(4.1)
6

∫ t

a

ω(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6

∫ t

a

ω(t)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6 (b− a)ω(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s.

Thus, by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6 (b− a)ω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| (b− a)ω(s)∆s

6 (b− a)ω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| (b− a)ω(t)∆s

= (b− a)ω(t)

(

1 +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| ∆s

)

= (b− a)e|℘|(t, a)ω(t) 6 (b− a)e|℘|(b, a)ω(t) = Lω(t).

Therefore, (1.1) indeed has Hyers–Ulam–Rassias stability of type Ω∗. �

Throughout the rest of the paper, we denote, for p > 1,

Ωp :=

{

ω ∈ Crd(I, (0,∞)) :

∫ t

a

ωp(s)∆s 6 ωp(t) for all t ∈ I
}

.

If we consider ω ∈ Ω∗ ∩ Ω1, then we can improve the HURS constant (if
b > a+ 1) as follows.

Theorem 4.2. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of

type Ω∗ ∩ Ω1 with HURSΩ∗∩Ω1
constant L := e|℘|(b, a).

Proof. As before, L is well defined and L > 0. Let ε > 0. Suppose that
ψ ∈ C1

rd(I,X) satisfies (4.1). Defining h(t) := ψ∆(t) + ℘(t)ψ(t) − f(t), we see that
h ∈ Crd(I,X). Let x0 = ψ(a). By Lemma 2.1, (3.2) holds. By (H), there exists a
solution φ of (1.1) satisfying φ(a) = x0. Equivalently, by Lemma 2.1, (3.3) holds.
Subtracting (3.3) from (3.2), we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s
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(4.1)
6

∫ t

a

ω(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6 ω(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s.

Thus, by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6 ω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)|ω(s)∆s

6 ω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)|ω(t)∆s

= ω(t)

(

1 +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| ∆s

)

= e|℘|(t, a)ω(t) 6 e|℘|(b, a)ω(t) = Lω(t).

Therefore, (1.1) indeed has Hyers–Ulam–Rassias stability of type Ω∗ ∩ Ω1. �

Remark 4.1. Note that for T = N0, Ω∗ ∩ Ω1 = Ω1, since any ω ∈ Ω1 satisfies

ω(t+ 1) >
t

∑

s=a

ω(s) > ω(t) for t ∈ Iκ.

Therefore, by Theorem 4.2, if T = N0 and (H) holds, then (1.1) has Hyers–Ulam–

Rassias stability of type Ω1 with HURSΩ1
constant L =

∏b−1
s=a (1 + |℘(s)|).

Now we consider only ω ∈ Ω1.

Theorem 4.3. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of

type Ω1 with HURSΩ1
constant

L := 1 + e|℘|(b, a) |℘|∞ , where |℘|∞ := sup
t∈I

|℘(t)| .

Proof. Note that |℘| ∈ Crd(I, [0,∞)), and so, also in view of [8, Theorem

1.65], L is well defined and L > 1. Let ε > 0. Suppose ψ ∈ C1
rd(I,X) satisfies (4.1).

Defining h(t) := ψ∆(t) +℘(t)ψ(t) − f(t), we see that h ∈ Crd(I,X). Let x0 = ψ(a).
By Lemma 2.1, (3.2) holds. By (H), there exists a solution φ of (1.1) satisfying
φ(a) = x0. Equivalently, by Lemma 2.1, (3.3) holds. Subtracting (3.3) from (3.2),
we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

(4.1)
6

∫ t

a

ω(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6 ω(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s.

Thus, by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6 ω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)|ω(s)∆s
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6 ω(t) + e|℘|(b, a) |℘|∞
∫ t

a

ω(s)∆s 6 Lω(t),

where, in addition to the nondecreasing nature of e|℘|(·, a), we have also used the
nonincreasing nature of e|℘|(b, ·), which follows from the fact that the derivative
of e|℘|(t, s) with respect to s (for fixed t) is − |℘(s)| e|℘|(t, σ(s)). Therefore, (1.1)
indeed has Hyers–Ulam–Rassias stability of type Ω1. �

Theorem 4.4. If (H) holds, then (1.1) has Hyers–Ulam–Rassias stability of

type Ω2 with HURSΩ2
constant L :=

√
b− a+ (b − a)e|℘|(b, a) |℘|∞.

Proof. As before, L is well defined and L >
√
b− a. Let ε > 0. Suppose that

ψ ∈ C1
rd(I,X) satisfies (4.1). Defining h(t) := ψ∆(t) + ℘(t)ψ(t) − f(t), we see that

h ∈ Crd(I,X). Let x0 = ψ(a). By Lemma 2.1, (3.2) holds. By (H), there exists a
solution φ of (1.1) satisfying φ(a) = x0. Equivalently, by Lemma 2.1, (3.3) holds.
Subtracting (3.3) from (3.2), we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

(4.1)
6

∫ t

a

ω(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6
√
t− a

√

∫ t

a

ω2(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6
√
b − a

√

ω2(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

=
√
b − aω(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s,

where we have used the Cauchy–Schwarz inequality [8, Theorem 6.15] on time
scales. Thus, by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6
√
b− aω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)|
√
b− aω(s)∆s

6
√
b− aω(t) + e|℘|(b, a) |℘|∞

√
b− a

∫ t

a

ω(s)∆s 6 Lω(t),

where we have used the Cauchy–Schwarz inequality once more. Therefore, (1.1)
indeed has Hyers–Ulam–Rassias stability of type Ω2. �

Theorem 4.5. Let p > 1 and q := p/(p − 1). If (H) holds, then (1.1) has

Hyers–Ulam–Rassias stability of type Ωp with HURSΩp
constant

L :=
q
√
b− a+ (b− a)2/qe|℘|(b, a) |℘|∞ .

Proof. As before, L is well defined and L >
q
√
b− a. Let ε > 0. Suppose that

ψ ∈ C1
rd(I,X) satisfies (4.1). Defining h(t) := ψ∆(t) + ℘(t)ψ(t) − f(t), we see that

h ∈ Crd(I,X). Let x0 = ψ(a). By Lemma 2.1, (3.2) holds. By (H), there exists a
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solution φ of (1.1) satisfying φ(a) = x0. Equivalently, by Lemma 2.1, (3.3) holds.
Subtracting (3.3) from (3.2), we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6

∫ t

a

‖h(s)‖ ∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

(4.1)
6

∫ t

a

ω(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6
q
√
t− a

p

√

∫ t

a

ωp(s)∆s+

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

6
q
√
b− a p

√

ωp(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s

= q
√
b− aω(t) +

∫ t

a

|℘(s)| ‖ψ(s) − φ(s)‖ ∆s,

where we have used the Hölder inequality [8, Theorem 6.13] on time scales. Thus,
by Gronwall’s inequality, Theorem 1.1, we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ 6
q
√
b− aω(t) +

∫ t

a

e|℘|(t, σ(s)) |℘(s)| q
√
b− aω(s)∆s

6
q
√
b− aω(t) + e|℘|(b, a) |℘|∞

q
√
b − a

∫ t

a

ω(s)∆s 6 Lω(t),

where we have used the Hölder inequality once more. Therefore, (1.1) indeed has
Hyers–Ulam–Rassias stability of type Ωp. �

The results in this section imply the following.

Theorem 4.6. If ℘ is regressive, then (1.1) has Hyers–Ulam–Rassias stability

of types Ω∗ and Ωp for all p > 1.

Combining Theorem 2.1 and the results in this section, we obtain a new suffi-
cient condition for Hyers–Ulam–Rassias stability of (1.1).

Theorem 4.7. If there exists α ∈ (0, 1) such that (2.2) holds, then (1.1) has

Hyers–Ulam–Rassias stability of types Ω∗ and Ωp for all p > 1.
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