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Abstract
In this paper, we investigate Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear quantum difference equa-

tions associated with a general quantum difference operator. This operator includes as special cases Jackson q-difference and
Hahn difference operators. At the end of the paper, an illustrative example is given to show the applicability of the theoretical
results.
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1. Introduction

Quantum difference operators allows us to deal with non-differentiable functions in the usual sense.
They have an essential role due to their applications in several mathematical areas such as orthogonal
polynomials, basic hypergeometric function, combinatorics, the calculus of variations and the theory of
relativity (see [1, 4, 9]). New results in quantum calculus can be found in [8] and the references cited
therein.

In a talk for Ulam at 1940, he discussed a number of important unsolved mathematical problems.
After that, these problems were collected in [15]. The notion of Ulam stability arose from a question of
these problems concerning the stability of group homomorphisms. In [10], Hyers gave a first affirmative
partial answer to this question for Banach spaces. After many years, Rassias [12] extended the result of
Hyers by allowing an unbounded Cauchy difference. Since then, stability problems of many functional
equations have been extensively investigated in various abstract spaces [2, 11, 12]. Henceafter, many
fine mathematicians are interesting in studying this type of stability, which is called Hyers-Ulam-Rassias
stability (HURs), for many differential and functional equations, see also [5, 13].

In this paper, we consider the quantum difference operator DΓ , which is defined by

DΓg(t) =
g(Γ(t)) − g(t)

Γ(t) − t
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for every t with Γ(t) 6= t and DΓg(t) = g′(t) when Γ(t) = t provided that g′(t) exists in the usual sense.
Here, Γ is a continuous function on an interval I for which Γ(t) ∈ I for any t ∈ I, and g is an arbitrary
function from I to a Banach space B. A function is said to be Γ -differentiable on I if it is differentiable
in the usual sense at every point t ∈ I at which Γ(t) = t. If Γ(t) = qt, q ∈ (0, 1), then DΓ = Dq,
the Jackson q-difference operator and if Γ(t) = qt+ω, q ∈ (0, 1), ω > 0, then DΓ = Dq,w, the Hahn
difference operator. Theory of quantum difference equations helps us to avoid proving results twice, once
for Jackson q- difference equations and once for Hahn difference equations (see [8]).

Our objective is to investigate HURs of first-order linear quantum difference equations, that include
DΓ . We denote

Γk(t) := Γ ◦ Γ ◦ Γ ◦ · · · ◦ Γ︸ ︷︷ ︸
k times

(t),

k ∈N0 = N∪ {0}, where N is the set of natural numbers. For convenience Γ 0(t) = t for all t ∈ I. It is well
known that a continuous function Γ : [a,b]→ [a,b] has at least a fixed point.

Throughout the paper, we assume Γ is a continuous increasing function on I that has a unique fixed
point s0 ∈ I and satisfies the following inequality:

(t− s0)(Γ(t) − t) 6 0 for all t ∈ I.

Moreover, B denotes a Banach space endowed with a norm ‖‖. Also, the Γ -interval is defined to be

[a,b]Γ = {Γk(a);k ∈N0}∪ {Γk(b);k ∈N0}∪ {s0} , where a,b ∈ I.

Finally, for any set B ⊂ R, the set B∗ is defined by

B∗ = B\{s0}.

For d ∈ [a,b], the following facts are commonly known to be true:

(1) for d > s0, we have Γk(d) is decreasing to s0 as k→∞;
(2) for d < s0, we have Γk(d) is increasing to s0 as k→∞.

Accordingly, it is convenient to set Γ∞(t) = s0, t ∈ [a,b]. For more details about quantum difference
calculus, we refer the reader to [7–9]. We only mention some fundamental definitions and theorems that
will be useful in our investigations.

Definition 1.1. Let g : I −→ B and c,d ∈ I. The Γ -integral of g from c to d is defined by∫d
c

g(t)dΓ t =

∫d
s0

g(t)dΓ t−

∫c
s0

g(t)dΓ t,

where ∫h
s0

g(t)dΓ t =

∞∑
k=0

(Γk(h) − Γk+1(h))g(Γk(h)), h ∈ I,

provided that the series converges at h = c and h = d. The function g is called Γ -integrable on I if the
series converges at c,d for all c,d ∈ I. Clearly, if g is continuous at s0 ∈ I, then g is Γ -integrable on I, see
[8].

Theorem 1.2 ([8]). Let g : I −→ B be continuous at s0. Define the function

G(t) =

∫t
s0

g(s)dΓs, t ∈ I.

Then G is continuous at s0,DΓG(t) exists for all t ∈ I, and DΓG(t) = g(t).
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Theorem 1.3 ([8]). Let g : I→ B be Γ -differentiable on I. Then∫d
c

DΓg(η)dΓη = g(d) − g(c), c,d ∈ I.

Theorem 1.4 ([8]). If Q : I → B is continuous at s0, then the series
∑∞
k=0 ‖(Γk(t) − Γk+1(t))Q(Γk(t))‖ is

uniformly convergent on every compact interval J ⊆ I containing s0.

Finally, the following Hölder inequality in the quantum setting was proved in [6] (see also [9]).

Theorem 1.5 (Γ -Hölder inequality). If f ∈ Lp([a,b]Γ , R), and g ∈ Lq([a,b]Γ , B), where p > 1,q = p
p−1 , then

fg ∈ (L1[a,b]Γ , B) and
‖fg‖1 6 ‖f‖p ‖g‖q,

that is
b∫
a

‖f(t)g(t)‖dΓ t 6
( b∫
a

|f(t)|pdΓ t
) 1
p
( b∫
a

‖g(t)‖qdΓ t
) 1
q

.

If we put p = q = 2 in the Γ -Hölder inequality we get the Γ -Cauchy-Schwarz inequality.

Our paper is organized as follows. Section 2 is devoted to quantum exponential functions and ex-
istence and uniqueness of solutions of first-order linear quantum difference equations. In Sections 3
(resp. 4), we establish sufficient conditions for Hyers-Ulam (resp. Hyers-Ulam-Rassias) stability of these
equations. In Section 5, we give an illustrative example to show the applicability of the theoretical results.

2. Quantum exponential functions and first-order linear equations

Let b ∈ I, b > s0 and (B, ‖‖) be a Banach space. As usual we denote by

C([s0,b], B) = {φ : [s0,b]→ B| φ is continuous}

endowed with the supremum norm
‖φ‖∞ = sup

t∈[s0,b]
‖φ(t)‖.

Assume that Q : I→ R is continuous function at s0. We recall the Γ -exponential function

eΓ ,Q(t, s) =
eΓ ,Q(t)

eΓ ,Q(s)
, (2.1)

where

eΓ ,Q(t) =
1∏∞

k=0

[
1 −Q(Γk(t))(Γk(t) − Γk+1(t))

] . (2.2)

Henceforth, we assume for the convergence of this product that

1 − (x− Γ(x))Q(x) 6= 0, x ∈ [s0,b].

It is worth mentioning that, under this condition, eΓ ,Q(t) is the unique solution of the initial value problem

DΓy(t) = Q(t)y(t), t ∈ [s0,b], y(s0) = y0 ∈ B.

The following result is of utmost importance in the theory of quantum difference equations.

Theorem 2.1 ([7]). If Q : I→ R is continuous at s0, then
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(i) DΓ ,ηeΓ ,Q(t,η) = −Q(η)eΓ ,Q(t, Γ(η)), where DΓ ,η is the Γ -derivative with respect to η;
(ii)
∫t
s0
eΓ ,Q(t, Γ(η))Q(η)dΓη = eΓ ,Q(t) − 1.

The following quantum Gronwall inequality was established in [9]. Likewise in the theory of differ-
ential equations, it is an efficient tool for establishing the existence and uniqueness of solutions.

Theorem 2.2 ([9]). Let y, f,Q be real valued functions on I that are continuous at s0 such that Q > 0. Then

y(t) 6 f(t) +
∫t
s0

y(η)Q(η)dΓη, t ∈ I,

implies

y(t) 6 f(t) +
∫t
s0

eΓ ,Q(t, Γ(η))f(η)Q(η)dΓη, t ∈ I.

Corollary 2.3 ([9]). Let Q(t) > 0 and µ ∈ R. Then

y(t) 6 µ+
∫t
s0

y(η)Q(η)dΓη, t ∈ I,

implies y(t) 6 µeΓ ,Q(t).

Now, we prove some useful properties of the Γ -exponential function which we use in our investiga-
tions.

Lemma 2.4. If Q is continuous on [s0,b], the Γ -exponential eΓ ,Q(t) is positive and continuous on [s0,b].

Proof. By Theorem 1.4, the series ∞∑
k=0

(Γk(t) − Γk+1(t))|Q(Γk(t))|

is uniformly convergent on [s0,b]. So, the product in (2.2) is uniformly and absolutely convergent on
[s0,b], see [14]. Hence, eΓ ,Q(t) is continuous. Also it is positive because if it has different signs at two
points, it will be zero at some intermediate point, which is impossible.

Theorem 2.5. If Q > 0 is a continuous function on [s0,b], then eΓ ,Q(t, s) is increasing in t ∈ [s0,b]Γ and
decreasing in s ∈ [s0,b]Γ .

Proof. Since DΓ eΓ ,Q(t) = Q(t) eΓ ,Q(t) > 0, t ∈ [s0,b]Γ , it follows that eΓ ,Q(t) is increasing in t ∈ [s0,b]Γ
(see [8]). This implies eΓ ,Q(t, s) is increasing in t and decreasing in s, from relation (2.1).

Corollary 2.6. If Q > 0 is a continuous function on [s0,b], then 0 < eΓ ,Q(t, s) 6 eΓ ,Q(b), t, s ∈ [s0,b]Γ .

Remark 2.7. Let Q be continuous at s0. Under the condition 1 − (t− Γ(t))|Q(t)| > 0, t ∈ [s0,b]Γ , we can see

eΓ ,Q(t) 6 eΓ ,|Q|(t), t ∈ [s0,b]Γ .

Proof. In view of Q(Γk(t)) 6 |Q(Γk(t))|,k ∈N0, we conclude that

∞∏
k=0

[1 − (Γk(t) − Γk+1(t))Q(Γk(t))] >
∞∏
k=0

[1 − (Γk(t) − Γk+1(t))|Q(Γk(t))|],

from which we reassure the correctness of the required inequality.
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A sufficient condition for the existence and uniqueness of a solution of the initial value problem

DΓy(t) = Q(t)y(t) + f(t), t ∈ [s0,b], y(s0) = y0 ∈ B, (2.3)

is given in the following theorem.

Theorem 2.8 ([7]). Assume that the following condition holds.

(P1) Let f ∈ C([s0,b], B) and Q ∈ C([s0,b], R) such that 1 − (t− Γ(t))Q(t) 6= 0 for all t ∈ [s0,b].

Then (2.3) has a unique solution y which is given by

y(t) = eΓ ,Q(t)y0 +

∫t
s0

eΓ ,Q(t, Γ(η))f(η)dΓη.

Another sufficient condition for the existence of a unique solution of the initial value problem (2.3) is
established in this section in Theorem 2.11.

Lemma 2.9. Let Q ∈ C([s0,b], R) and f ∈ C([s0,b], B). y is a solution of (2.3) if and only if y satisfies the integral
equation

y(t) = y0 +

∫t
s0

(Q(η)y(η) + f(η))dΓη, t ∈ [s0,b], (2.4)

for some constant y0 ∈ B.

Proof. If y satisfies (2.3), then integrating both sides of the equation from s0 to t we get that (2.4) holds
with y0 = y(s0). Conversely, if y satisfies (2.4), then we can differentiate y to get (2.3).

Corollary 2.10. Let Q ∈ C([s0,b], R) and f ∈ C([s0,b], B). For y0 ∈ B, (2.3) has at most one solution y satisfying
y(s0) = y0.

Proof. Let y0 ∈ B. Assume that y1 and y2 are solutions of (2.3) with y1(s0) = y2(s0) = y0. Then, by
Lemma 2.9, both y1 and y2 satisfy (2.4). This implies

‖y1(t) − y2(t)‖ 6
∫t
s0

|Q(η)| ‖y1(η) − y2(η)‖dΓη, t ∈ [s0,b].

Now we let in Gronwall’s inequality, Theorem 2.2, y(t) = ‖y1(t) − y2(t)‖, f = 0. Hence, the assumptions
in Theorem 2.2 are satisfied, and

y(t) 6 f(t) +
∫t
s0

y(η)|Q(η)|dΓη, t ∈ [s0,b],

holds. Thus, by Theorem 2.2,

y(t) 6 f(t) +
∫t
s0

eΓ ,|Q|(t, Γ(η))f(η)|Q(η)|dΓ (η) = 0, t ∈ [s0,b],

i.e., ‖y1(t) − y2(t)‖ 6 0 for all t ∈ [s0,b], so y1 = y2.

Theorem 2.11. Assume that the following condition holds.

(P2) f ∈ C([s0,b], B), Q ∈ C([s0,b], R) and there exists l ∈ (0, 1) such that∫t
s0

|Q(s)|dΓs 6 l, t ∈ [s0,b].
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For any y0 ∈ B, equation (2.3) has a unique solution y with y(s0) = y0.

Proof. Fix y0 ∈ B. The operator T : C([s0,b], B)→ C([s0,b], B) defined by

Ty(t) := y0 +

∫t
s0

(Q(η)y(η) + f(η))dΓη, t ∈ [s0,b],

is a contraction. Indeed, for y1,y2 ∈ C([s0,b], B), we have

‖Ty1(t) − Ty2(t)‖ 6
∫t
s0

|Q(η)| ‖y1(η) − y2(η)‖ dΓη 6 l ‖y1 − y2‖∞ , t ∈ [s0,b].

Hence
‖Ty1 − Ty2‖∞ 6 l ‖y1 − y2‖∞ .

Therefore, T has a unique fixed point y, which is the unique solution of (2.4) satisfying y(s0) = y0. Thus,
by Lemma 2.9, y is the unique solution of (2.3) with the condition y(s0) = y0.

Remark 2.12. If (P2) holds, then condition (P1) holds but the converse is not true. Assume (P1) does not
hold, there exists x0 ∈ [s0,b] such that Q(x0)(x0 − Γ(x0)) = 1, then∫x0

s0

|Q(s)|dΓ s =

∞∑
k=0

(Γk(x0) − Γ
k+1(x0))|Q(Γ

k(x0))| > (x0 − Γ(x0)|Q(x0)| = 1.

The converse is not true. Assume Q(t) = 1, t ∈ [0, 1] and Γ : [0, 1] → [0, 1] such that Γ(0) = 0 and
Γ(t) < t, t ∈ (0, 1]. Then t− Γ(t) < 1, t ∈ [0, 1]. We have

∫t
0 |Q(s)|dΓs = t, so sup

∫t
0 |Q(s)|dΓs = 1. It follows

that condition (P1) holds but (P2) dose not hold.

3. Hyers-Ulam stability of first-order quantum difference equations

We need the following space

C1([s0,b], B) = {φ ∈ C([s0,b], B) : DΓφ exists and DΓφ ∈ C([s0,b], B)}.

In this section, we establish Hyers-Ulam stability of first order linear quantum difference equation (2.3).
From now on assume f ∈ C([s0,b], B) and Q ∈ C([s0,b], R) (see [3]).

First, we introduce the concept of Hyers-Ulam stability.

Definition 3.1. Equation (2.3) is said to have Hyers-Ulam stability, if there exists a constant K > 0, a
so-called HUs constant, with the following property. For any ε > 0, if y ∈ C1([s0,b], B) is such that

‖DΓy(t) −Q(t)y(t) − f(t)‖ 6 ε, t ∈ [s0,b]Γ ,

there exists a solution u of equation (2.3) such that

‖y(t) − u(t)‖ 6 Kε, t ∈ [s0,b]Γ .

Theorem 3.2. Assume that the following condition holds.

(P3) For every y0 ∈ B, equation (2.3) has a solution y that satisfies y(s0) = y0.

Then (2.3) has Hyers-Ulam stability with HUs constant given by

K = (b− s0)eΓ ,|Q|(b). (3.1)
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Proof. Let ε > 0 and y ∈ C1([s0,b], B) satisfies

‖DΓy(t) −Q(t)y(t) − f(t)‖ 6 ε, t ∈ [s0,b]Γ .

Set

σ(t) = DΓy(t) −Q(t)y(t) − f(t), y(s0) = y0.

By Lemma 2.9, y solves

y(t) = y0 +

∫t
s0

(Q(η)y(η) + f(η) + σ(η))dΓη. (3.2)

In view of condition (P3), (2.3) has a solution u that satisfies u(s0) = y0. Again, by Lemma 2.9, u satisfies

u(t) = y0 +

∫t
s0

(Q(η)u(η) + f(η))dΓη, t ∈ [s0,b]. (3.3)

It follows from (3.2) and (3.3) that

‖y(t) − u(t)‖ 6
∫t
s0

‖σ(η)‖dΓη+
∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6 ε(b− s0) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ .
(3.4)

By Theorem 2.2 and (3.4), we obtain

‖y(t) − u(t)‖ 6 ε(b− s0)eΓ ,|Q|(t) 6 ε(b− s0)eΓ ,|Q|(b), t ∈ [s0,b]Γ .

Regarding to Theorem 2.11, we can establish the following result.

Theorem 3.3. Assume condition (P2) holds. Then (2.3) has Hyers-Ulam stability with HUs constant K given by
(3.1).

4. Hyers-Ulam-Rassias stability

The following describes Hyers-Ulam-Rassias stability of (2.3) (see [10]).

Definition 4.1. Let F ⊆ C([s0,b], (0,∞)). Equation (2.3) is said to have Hyers-Ulam-Rassias stability of
type F if there exists a constant K > 0, a so-called HURs F constant, with the following property. For any
φ ∈ F, if y ∈ C1([s0,b], B) is such that

‖DΓy(t) −Q(t)y(t) − f(t)‖ 6 φ(t), t ∈ [s0,b]Γ , (4.1)

then there exists a solution u of (2.3) such that

‖y(t) − u(t)‖ 6 Kφ(t), for all t ∈ [s0,b]Γ .

Theorem 4.2. Let F∗ := {φ ∈ C([s0,b], (0,∞)) : φ is nondecreasing on [s0,b]Γ } . If (P3) holds, then (2.3) has
Hyers-Ulam-Rassias stability of type F∗ with HURs F∗ constant

K := (b− s0)eΓ ,|Q|(b). (4.2)
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Proof. Suppose φ ∈ F∗ and y ∈ C1([s0,b], B) satisfies (4.1). Set

σ(t) := DΓy(t) −Q(t)y(t) − f(t). (4.3)

Clearly, σ ∈ C([s0,b], B). Let y0 = y(s0). By Lemma 2.9, y solves

y(t) = y0 +

∫t
s0

(Q(η)y(η) + f(η) + σ(η))dΓη. (4.4)

In view of condition (P3), (2.3) has a solution u that satisfies u(s0) = y0. Again, by Lemma 2.9, u satisfies

u(t) = y0 +

∫t
s0

(Q(η)u(η) + f(η))dΓη, t ∈ [s0,b]. (4.5)

Subtracting (4.5) from (4.4), we find, for all t ∈ [s0,b],

‖y(t) − u(t)‖ 6
∫t
s0

‖σ(η)‖dΓη+
∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη.

This implies

‖y(t) − u(t)‖6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ , (4.6)

from which, it follows by the nondecreasing property of φ, that

‖y(t) − u(t)‖ 6
∫t
s0

φ(t)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

= (b− s0)φ(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ .

Thus, by Gronwall’s inequality, Theorem 2.2, we obtain, for t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6 (b− s0)φ(t) +

∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|(b− s0)φ(η)dΓη

6 (b− s0)φ(t) +

∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|(b− s0)φ(t)dΓη

= (b− s0)φ(t)
(

1 +

∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|dΓη
)

= (b− s0)φ(t)
(

1 + eΓ ,|Q|(t) − 1
)
= (b− s0)e|Q|(t)φ(t) 6 (b− s0)eΓ ,|Q|(b)φ(t) = Kφ(t),

where we have used Theorem 2.1 (ii). Therefore, (2.3) has Hyers-Ulam-Rassias stability of type F∗ with
HURs F∗ constant given by (4.2).

Throughout the rest of the paper, we denote, for p > 1,

Fp :=

{
φ ∈ C([s0,b], (0,∞)) :

∫t
s0

φp(η)dΓη 6 φp(t) for all t ∈ [s0,b]Γ

}
.

If we consider φ ∈ F∗ ∩F1, then we can improve the HURs constant (if b > s0 + 1) as follows.

Theorem 4.3. If (P3) holds, then (2.3) has Hyers-Ulam-Rassias stability of type F∗∩F1 with HURs F∗∩F1 constant

K := eΓ ,|Q|(b). (4.7)
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Proof. Let φ ∈ F∗ ∩ F1. Suppose y ∈ C1([s0,b], B) satisfies (4.1). Defining σ as in (4.3), we see that
σ ∈ C([s0,b], B). Let y0 = y(s0). By Lemma 2.9, (4.4) holds. By (P3), there exists a solution u of (2.3)
satisfying u(s0) = y0. Equivalently, by Lemma 2.9, (4.5) holds. Subtracting (4.4) from (4.5), we get (4.6).
This implies

‖y(t) − u(t)‖6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη 6 φ(t) +
∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ .

By Gronwall’s inequality, Theorem 2.2, we obtain

‖y(t) − u(t)‖ 6 φ(t) +
∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|φ(η)dΓη.

6 φ(t) +φ(t)
∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|dΓη

= φ(t)(1 + eΓ ,|Q|(t) − 1) 6 φ(t)eΓ ,|Q|(t) 6 φ(t)eΓ ,|Q|(b), t ∈ [s0,b]Γ .

Therefore, (2.3) has Hyers-Ulam-Rassias stability of type F∗ ∩F1 with HURs constant given by (4.7).

Theorem 4.4. If (P3) holds, then (2.3) has Hyers-Ulam-Rassias stability of type F1 with HURs F1 constant

K := 1 + eΓ ,|Q|(b)‖Q‖∞. (4.8)

Proof. Let φ ∈ F1. Suppose y ∈ C1([s0,b], B) satisfies (4.1). Defining σ as in (4.3), we see that σ ∈
C([s0,b], B). Let y0 = y(s0). By Lemma 2.9, (4.4) holds. By (P3), there exists a solution u of (2.3) satisfying
u(s0) = y0. Equivalently, by Lemma 2.9, (4.5) holds. Subtracting (4.4) from (4.5), we get (4.6). This implies

‖y(t) − u(t)‖6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη 6 φ(t) +
∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ .

Thus, by Gronwall’s inequality, Theorem 2.2, we obtain, for all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6 φ(t) +
∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|φ(η)dΓη 6 φ(t) + eΓ ,|Q|(b)‖Q‖∞
∫t
s0

φ(η)dΓη 6 Kφ(t).

Therefore, (2.3) indeed has Hyers-Ulam-Rassias stability of type F1 with HURs constant given by (4.8).

Theorem 4.5. If (P3) holds, then (2.3) has Hyers-Ulam-Rassias stability of type F2 with HURs F2 constant

K :=
√
b− s0

(
1 +

√
b− s0eΓ ,|Q|(b)‖Q‖∞). (4.9)

Proof. Let φ ∈ F2 and y ∈ C1([s0,b], B) satisfies (4.1). Defining σ as in (4.3), and following the same steps
as in the proof of Theorem 4.4, we find, for all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6
√
t− s0

√∫t
s0

φ2(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6
√
b− s0

√
φ2(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

=
√
b− s0φ(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη,
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where we have used of Cauchy-Schwarz inequality [9] . Thus, by Gronwall’s inequality, Theorem 2.2, we
obtain, for all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6
√
b− s0φ(t) +

∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|
√
b− s0φ(η)dΓη

6
√
b− s0φ(t) + eΓ ,|Q|(b)‖Q‖∞√b− s0

∫t
s0

φ(η)dΓη 6 Kφ(t),

where we have used of Cauchy-Schwarz inequality once more. Therefore, (2.3) indeed has Hyers-Ulam-
Rassias stability of type F2 with HURs constant given by (4.9).

Theorem 4.6. Let p > 1 and a := p/(p− 1). If (P3) holds, then (2.3) has Hyers-Ulam-Rassias stability of type
Fp with HURs Fp constant

K := a
√
b− s0

(
1 + a

√
b− s0eΓ ,|Q|(b)‖Q‖∞). (4.10)

Proof. Let φ ∈ Fp and y ∈ C1([s0,b], B) satisfies (4.1). Define σ as in (4.3). Again, we get (4.6). From
which we obtain for all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6 a
√
t− s0

p

√∫t
s0

φp(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6 a
√
b− s0

p
√
φp(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

= a
√
b− s0φ(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη, t ∈ [s0,b]Γ ,

where we have used of Hölder inequality [9]. Thus, by Gronwall’s inequality, Theorem 2.2, we obtain, for
all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6 a
√
b− s0φ(t) +

∫t
s0

eΓ ,|Q|(t, Γ(η))|Q(η)|
a
√
b− s0φ(η)dΓη

6 a
√
b− s0φ(t) + eΓ ,|Q|(b)‖Q‖∞ a

√
b− s0

∫t
s0

φ(η)dΓη 6 Kφ(t), t ∈ [s0,b]Γ ,

where we have used of Hölder inequality once more. Therefore, (2.3) has Hyers-Ulam-Rassias stability of
type F2 with HURs constant, given by (4.10).

Since both of conditions (P1) and (P2) imply (P3), then we conclude following. Theorems 4.2, 4.3, 4.4,
4.5, and 4.6 are true if we replace (P3) by either (P1) or (P2).

For the last result, we denote, for p > 1 and r > 0, by Frp the family

Frp :=

{
φ ∈ C([s0,b], (0,∞)) :

∫t
s0

φp(η)dΓη 6 rφp(t) for all t ∈ [s0,b]Γ

}
.

Theorem 4.7. Let a := p/(p−1), where p > 1. If either (P1), (P2) or (P3) hold, then (2.3) has Hyers-Ulam-Rassias
stability of type Frp with HURs Frp

constant

K := a
√
b− s0

p
√
r
(

1 + a
√
b− s0

p
√
r eΓ ,|Q|(b)‖Q‖∞) . (4.11)
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Proof. Let φ ∈ Frp and y ∈ C1([s0,b], B) satisfies (4.1). Defining σ as in (4.3), we see that σ ∈ C1([s0,b], B).
Let y0 = y(s0). By Lemma 2.9, (4.4) holds. By (P1), (P2) or (P3), there exists a solution u of (2.3) satisfying
u(s0) = y0. Equivalently, by Lemma 2.9, (4.5) holds. Subtracting (4.4) from (4.5), we get (4.6). We find, for
all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6
∫t
s0

φ(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6 a
√
t− s0

p

√∫t
s0

φp(η)dΓη+

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

6 a
√
b− s0

p
√
rφp(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη

= a
√
b− s0

p
√
rφ(t) +

∫t
s0

|Q(η)|‖y(η) − u(η)‖dΓη,

where we have used Hölder’s inequality, Theorem [9]. Thus, by applying Gronwall’s inequality, Theorem
2.2, we get, for all t ∈ [s0,b]Γ ,

‖y(t) − u(t)‖ 6 a
√
b− s0

p
√
rφ(t) +

∫t
s0

e|Q|(t, Γ(η))|Q(η)|
a
√
b− s0

p
√
rφ(η)dΓη

6 a
√
b− s0

p
√
rφ(t) + e|Q|(b)‖Q‖∞ a

√
b− s0

p
√
r

∫t
s0

φ(η)dΓη

6 a
√
b− s0

p
√
rφ(t) + eΓ ,|Q|(b)‖Q‖∞ a

√
b− s0

p
√
r( a
√
b− s0

p
√
rφ(t))

6 a
√
b− s0

p
√
rφ(t)(1 + a

√
b− s0

p
√
reΓ ,|Q|(b)‖Q‖∞) = Kφ(t).

Therefore, (2.3) has Hyers-Ulam-Rassias stability of type Frp with constant K given in (4.11).

5. Example

The following example shows the applicability of the theoretical results.

Example 5.1. Consider the equation

DΓy(t) = θeΓ ,λ(t)y(t) + f(t), t ∈ [s0,b],

where λ > 0 and 0 < θ < λ
eΓ ,λ(b)−1 . Set l = θ

λ(eΓ ,λ(b) − 1). One can see that condition (P2) holds. Indeed,

∫t
s0

Q(s)dΓ =
θ

λ
(eΓ ,λ(t) − 1) = l < 1.

Therefore, we can apply Theorems 3.2, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7.
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