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Abstract
We investigateHyers–Ulam andHyers–Ulam–Rassias stability of first-order nonlinear
dynamic equations for functions defined on a time scale with values in a Banach space.

Keywords Time scales · First-order nonlinear dynamic equations · Hyers–Ulam
stability · Hyers–Ulam–Rassias stability

Mathematics Subject Classification 34N05 · 34D20 · 39A30

1 Preliminaries and Introduction

The study of stability problems for various functional equations was triggered by an
intriguing and famous talk presented by Ulam at University of Wisconsin in 1940.
In his talk, Ulam discussed a number of important unsolved mathematical problems.
After that, these problems were collected in [23]. The notion of Ulam stability arose
from a question of these problems concerning the stability of group homomorphisms.
In [10], Hyers gave a first affirmative partial answer to this question for Banach
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spaces. After many years, Rassias [20] extended the result of Hyers by allowing an
unboundedCauchy difference. Since then, stability problems ofmany functional equa-
tions have been extensively investigated in various abstract spaces [8,11,21]. However,
concerning functional equations, Obłoza seems to be the first mathematician who has
investigated Hyers–Ulam stability of linear differential equations (see [17,18]). There-
after, Alsina andGer [2] published their paper, handlingHyers–Ulam stability of linear
differential equations. Soon after, Miura and Takahasi et al. [14–16] deeply and sys-
tematically studied Ulam stability of differential equations in various abstract spaces.
Many articles dealing with Ulam, Hyers–Ulam, and Hyers–Ulam–Rassias stability in
various contexts were edited by Rassias [19]. In [12], Li and Shen introduced Hyers–
Ulam stability of scalar second-order differential equations of the form

y′′ + p(x)y′ + q(x)y + r(x) = 0,

that is, if y is an approximate solution of this equation, then there exists an exact solu-
tion of the equation near y. Also, Li and Shen [13] proved Hyers–Ulam stability of
homogeneous linear differential equations of second order. Paşu Gavruta [9] proved
Hyers–Ulam stability of second-order linear differential equations with boundary con-
ditions and initial conditions. That is, if y is an approximate solution of the differential
equation

y′′ + β(x)y = 0 with y(a) = y(b),

then there exists a solution of the differential equation near y. Hyers–Ulam stabil-
ity of exact second-order linear differential equations was proved in [7]. Also in [7],
Hyers–Ulam stability of second-order linear differential equations with constant coef-
ficients, Euler, Hermite, Cheybyshev, and Legendre differential equations was proved.
These results generalize the main results of Li and Shen [12,13]. In 2012, Anderson
et al. [3] established Hyers–Ulam stability of scalar second-order linear nonhomoge-
neous dynamic equations on time scales of the form

x��(t) + p(t)x�(t) + r(t)x(t) = f (t), t ∈ [a, b]T,

where the given functions p, r , f ∈ Crd([a, b]T,R), the space of all real-valued rd-
continuous functions on [a, b]T. They extended the work of Li and Shen [12,13]
to prove Hyers–Ulam stability of homogenous and nonhomogenous linear dynamic
equations of second-order on time scales. Also, in 2013, András and Mészáros [4]
studied Hyers–Ulam stability of some linear and nonlinear dynamic equations and
integral equations on time scales, based on the theory of Picard operators. In 2017,
Shen [22] establishedHyers–Ulam stability of first-order linear dynamic equations and
its adjoint equations on time scales by using the integrating factor method. Recently,
there has been a great interest in studying stability of dynamic equations on time scales.
In [1], Alghamdi et al. investigated Hyers–Ulam–Rassias stability of first-order linear
dynamic equations on time scales.
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In this paper, we investigate Hyers–Ulam stability and Hyers–Ulam–Rassias sta-
bility of first-order nonlinear dynamic equations on time scales of the form

ψ�(t) = ℘(t)ψ(t) + F(t, ψ(t), h(ψ(t))) + f (t), t ∈ Iκ , ψ(a) = a0 ∈ X,

(1.1)

where I := [a, b] ∩ T with a time scale T ⊂ R, a, b ∈ T, a < b, and X is a Banach
space. Also, F : I × X

2 → X is such that F(·, x, y) is rd-continuous and F(t, ·, y)
and F(t, x, ·) are continuous for all t ∈ I and x, y ∈ X, ℘ : I → R is regressive
and rd-continuous, f : I → X is rd-continuous, and h : X → X is continuous.
Here, X is a Banach space with norm ‖·‖ and X

2 is a Banach space endowed with
‖(x, y)‖ = ‖x‖ + ‖y‖. As usual, for a bounded function � : X → Y from a normed
space X to a normed space Y , we denote

‖�‖∞ = sup
x∈X

‖�(x)‖ .

For the time scale terminology, we refer the reader to Bohner and Peterson [5,6]. Here,
we only recall some definitions and results pertinent to the rest of the paper.

Definition 1.1 A function f : T × X
k → X is said to satisfy a Lipschitz condition

with constant L > 0 if

‖ f (t, x1, . . . , xk) − f (t, y1, . . . , yk)‖ ≤ L
k∑

i=1

‖xi − yi‖

for all xi , yi ∈ X and all t ∈ T.

Theorem 1.1 (See [5, Theorem 1.117(i)]) If G(t) = ∫ t
a f (t, s)�s, then

G�(t) =
∫ t

a
f �(t, s)�s + f (σ (t), t).

Theorem 1.2 (Gronwall’s inequality, see [5, Theorem 6.4]) Let y, f ∈ Crd(I,R)

and p ∈ Crd(I, [0,∞)). Then

y(t) ≤ f (t) +
∫ t

a
y(s)p(s)�s for all t ∈ I

implies

y(t) ≤ f (t) +
∫ t

a
ep(t, σ (s)) f (s)p(s)�s for all t ∈ I.

Theorem 1.3 (Hölder’s inequality, see [5, Theorem 6.13]) For f , g ∈ Crd(I,R), we
have
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∫ b

a
| f (t)g(t)|�t ≤

{∫ b

a
| f (t)|p�t

} 1
p
{∫ b

a
|g(t)|q�t

} 1
q

,

where p > 1 and q = p/(p − 1).

Theorem 1.4 If ℘ ∈ R and a, b, c ∈ T, then

[
e℘(c, ·)]� = −℘

[
e℘(c, ·)]σ

and

∫ b

a
℘(t)e℘(c, σ (t))�t = e℘(c, a) − e℘(c, b).

Remark 1.1 In view of the increasing nature (resp. decreasing nature) of the function
e|℘|(t, s) in the first argument (resp. in the second argument), we conclude that

|e℘(t, σ (s))| ≤ e|℘|(t, σ (s)) ≤ e|℘|(b, a) for all t, s ∈ I.

2 Existence and Uniqueness Results

In this section, we investigate sufficient conditions for the existence and uniqueness of
solutions of (1.1) by applying Banach’s fixed point theorem. We need the following
theorem to obain our results.

Theorem 2.1 If ℘ ∈ R, then ψ solves (1.1) if and only if

ψ(t) = e℘(t, a)a0 +
∫ t

a
e℘(t, σ (s))[F(s, ψ(s), h(ψ(s))) + f (s)]�s, t ∈ I.

(2.1)

Proof We denote

Hψ(s) :=F(s, ψ(s), h(ψ(s))) + f (s).

Assume ψ solves (2.1). Then

ψ�(t) = ℘(t)e℘(t, a)a0 +
∫ t

a
℘(t)e℘(t, σ (s))Hψ(s)�s + Hψ(t)

= ℘(t)

(
e℘(t, a)a0 +

∫ t

a
e℘(t, σ (s))Hψ(s)�s

)
+ Hψ(t)

= ℘(t)ψ(t) + Hψ(t)
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and ψ(a) = a0. Hence ψ solves (1.1). To prove the other direction, assume that ψ

solves (1.1), i.e.,

ψ�(t) = ℘(t)ψ(t) + Hψ(t), t ∈ I, ψ(a) = a0.

By [5, Theorem 2.77],

ψ(t) = e℘(t, a)a0 +
∫ t

a
e℘(t, σ (s))Hψ(s)�s.

Therefore, ψ satisfies (2.1). 
�
Throughout the rest of the paper, we use the following conditions.

(H1) ℘ ∈ R and f ∈ Crd.
(H2) F and h satisfy Lipschitz conditions with constants β and γ , respectively.
(H3) For any a0 ∈ X, (1.1) has a solution φ satisfying φ(a) = a0.

(H4) θ := sup
t∈I

∫ t

a
|e℘(t, σ (s))|�s <

1

β(1 + γ )
.

(H5) (b − a)e|℘|(b, a) <
1

β(1 + γ )
.

Theorem 2.2 Assume (H1), (H2), and (H4). If a0 ∈ X, then (1.1) has a unique solution
ψ satisfying ψ(a) = a0.

Proof Fix a0 ∈ X. Define the operator T : Crd(I,X) → Crd(I,X) by

Tψ(t) = e℘(t, a)a0 +
∫ t

a
e℘(t, σ (s))[F(s, ψ(s), h(ψ(s))) + f (s)]�s.

For ψ1, ψ2 ∈ Crd(I,X), we have

‖Tψ1(t) − Tψ2(t)‖
≤

∫ t

a
|e℘(t, σ (s))| ‖F(s, ψ1(s), h(ψ1(s))) − F(s, ψ2(s), h(ψ2(s)))‖ �s.

By (H2), we get

‖Tψ1(t) − Tψ2(t)‖
≤

∫ t

a
|e℘(t, σ (s))|β [‖ψ1(s) − ψ2(s)‖ + ‖h(ψ1(s)) − h(ψ2(s))‖]�s

≤
∫ t

a
|e℘(t, σ (s))|β [‖ψ1(s) − ψ2(s)‖ + γ ‖ψ1(s) − ψ2(s)‖

]
�s

≤
∫ t

a
|e℘(t, σ (s))|β(1 + γ ) ‖ψ1(s) − ψ2(s)‖ �s
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≤ β(1 + γ ) ‖ψ1 − ψ2‖∞
∫ t

a
|e℘(t, σ (s))|�s

≤ θβ(1 + γ ) ‖ψ1 − ψ2‖∞ .

This implies that T is a contraction. Therefore, T has a unique fixed point ψ , which
is the unique solution of (2.1) satisfying ψ(a) = a0. Thus, by Theorem 2.1, ψ is the
unique solution of (1.1). 
�
Corollary 2.1 Assume (H1), (H2), and (H5). If a0 ∈ X, then (1.1) has a unique solution.

3 Hyers–Ulam Stability

In this section, we investigate Hyers–Ulam stability of (1.1). For a function ψ ∈
C1
rd(I,X), we denote

Hψ(t) :=F(t, ψ(t), h(ψ(t))) + f (t) (3.1)

and

gψ(t) := ψ�(t) − ℘(t)ψ(t) − Hψ(t). (3.2)

Definition 3.1 (Hyers–Ulam stability) We say that (1.1) has Hyers–Ulam stability if
there exists a constant L > 0, a so-called HUS constant, with the following property:
For any ε > 0, if ψ ∈ C1

rd(I,X) is such that

∥∥gψ(t)
∥∥ ≤ ε for all t ∈ Iκ , (3.3)

then there exists a solution φ : I → X of (1.1) such that

‖ψ(t) − φ(t)‖ ≤ Lε for all t ∈ I. (3.4)

The following result establishes a new sufficient condition for Hyers–Ulam stability
of (1.1).

Theorem 3.1 If (H1), (H2), and (H3) hold, then (1.1) has Hyers–Ulam stability with
HUS constant

L := (b − a)e|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a). (3.5)

Proof Let ε > 0. Suppose ψ ∈ C1
rd(I,X) is such that (3.3) holds. Then

ψ�(t) = ℘(t)ψ(t) + Hψ(t) + ψ�(t) − ℘(t)ψ(t) − Hψ(t)

= ℘(t)ψ(t) + Hψ(t) + gψ(t).
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Set a0 = ψ(a). By Theorem 2.1,

ψ(t) = e℘(t, a)a0 +
∫ t

a
e℘(t, σ (s))

[
Hψ(s) + gψ(s)

]
�s. (3.6)

By (H3), there exists a solution φ of (1.1) with φ(a) = a0, that is, by Theorem 2.1,

φ(t) = e℘(t, a)a0 +
∫ t

a
e℘(t, σ (s))Hφ(s)�s, t ∈ I. (3.7)

Subtracting (3.7) from (3.6), we find, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∥∥∥∥
∫ t

a
e℘(t, σ (s))gψ(s)�s

∥∥∥∥

+
∥∥∥∥
∫ t

a
e℘(t, σ (s))

[F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))
]
�s

∥∥∥∥ .

Since
∥∥gψ(t)

∥∥ ≤ ε holds for t ∈ I and taking into account (H2), we get

‖ψ(t) − φ(t)‖ ≤ ε

∫ t

a

∣∣e℘(t, σ (s))
∣∣�s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣β [‖ψ(s) − φ(s)‖ + ‖h(ψ(s)) − h(φ(s))‖]�s

≤ ε

∫ t

a

∣∣e℘(t, σ (s))
∣∣�s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣β

[‖ψ(s) − φ(s)‖ + γ ‖ψ(s) − φ(s)‖]�s

≤ ε

∫ t

a

∣∣e℘(t, σ (s))
∣∣�s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣β(1 + γ ) ‖ψ(s) − φ(s)‖�s

≤ ε(b − a)e|℘|(b, a) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖�s.

Thus, by Gronwall’s inequality, Theorem 1.2, we deduce that

‖ψ(t) − φ(t)‖ ≤ ε(b − a)e|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a) = Lε.

Therefore, (1.1) has Hyers–Ulam stability with HUS constant L given in (3.5). 
�
Remark 3.1 If F = 0, then (1.1) is a first-order linear dynamic equation. In this case,
we obtain the HUS constant L = (b − a)e|℘|(b, a) given in [1].

As adirect consequenceofTheorems2.2 andCorollary 2.1,wededuce the following
result.
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Corollary 3.1 Assume (H1) and (H2). In addition, assume (H4) or (H5). Then (1.1) has
Hyers–Ulam stability with constant L.

Example 3.1 We now give an example such that (H1), (H2), and (H5) are statisfied, so
that, for example, Corollary 3.1 applies. Consider

T = P1,1 :=
∞⋃

k=0

[2k, 2k + 1]

and let

m ∈ N, a = 0, b = 2m + 1, β ∈
(
0,

1

(2m + 1)(2e)m+1

)
.

Moreover, we let f ∈ Crd, ℘(t) ≡ 1, and

F(t, x, y) = β(sin x + y), h(x) = cos x .

Equation (1.1) then takes the form

ψ�(t) = ψ(t) + β (sin(ψ(t)) + cos(ψ(t))) + f (t).

We note that (H1) is satisfied because ℘ ∈ R and f ∈ Crd. We also note that (H2) is
satisfied becauseF is Lipschitz continuouswithLipschitz constantβ and h is Lipschitz
continuous with Lipschitz constant γ = 1. Finally, according to [5, Example 2.58],

e1(b, a) = e1(2m + 1, 0) = 2mem+1.

Hence,

(b − a)e|℘|(b, a) = (2m + 1)2mem+1 <
1

2β
= 1

β(1 + γ )
,

and thus (H5) is satisfied as well.

4 Hyers–Ulam–Rassias Stability

In this section, we investigate Hyers–Ulam–Rassias stability of (1.1).

Definition 4.1 (Hyers–Ulam–Rassias stability) Let M be a family of positive rd-
continuous functions defined onI.We say that (1.1) hasHyers–Ulam–Rassias stability
of type M if there exists a constant L > 0, a so-called HURSM constant, with the
following property: For any ω ∈ M, if ψ ∈ C1

rd(I,X) is such that

∥∥gψ(t)
∥∥ ≤ ω(t) for all t ∈ Iκ , (4.1)
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then there exists a solution φ : I → X of (1.1) such that

‖ψ(t) − φ(t)‖ ≤ Lω(t) for all t ∈ I. (4.2)

We use the notations (3.1), (3.2),

M∗ := {ω ∈ Crd(I, (0,∞)) : ω is nondecreasing} ,

and for p ≥ 1,

Mp :=
{
ω ∈ Crd(I, (0,∞)) :

∫ t

a
ωp(s)�s ≤ ωp(t) for all t ∈ I

}
.

The following results are concerned with Hyers–Ulam–Rassias stability.

Theorem 4.1 If (H1), (H2), and (H3) hold, then (1.1) has Hyers–Ulam–Rassias sta-
bility of type M∗ with HURSM∗ constant

L := (b − a)e|℘|(b, a)
(
1 + (b − a)β(1 + γ )e|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a)

)
.

(4.3)

Proof Let ω ∈ M∗ and ψ ∈ C1
rd(I,X) be such that (4.1) holds. Let a0 = ψ(a).

By Theorem 2.1, (3.6) holds. By (H3), there exists a solution φ of (1.1) that satisfies
φ(a) = a0. By Theorem 2.1, (3.7) holds. Subtracting (3.7) from (3.6), we obtain, for
all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ∥∥gψ(s)

∥∥ �s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ‖F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))‖ �s

≤ e|℘|(b, a)

∫ t

a
ω(s)�s + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖ �s

≤ (b − a)e|℘|(b, a)ω(t) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖ �s.

Applying Gronwall’s inequality, Theorem 1.2, we get, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤ (b − a)e|℘|(b, a)ω(t)

+
∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))(b − a)e|℘|(b, a)ω(s)β(1 + γ )e|℘|(b, a)�s

= (b − a)e|℘|(b, a)ω(t)

+(b − a)
(
e|℘|(b, a)

)2
β(1 + γ )

∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))ω(s)�s

≤ (b − a)e|℘|(b, a)ω(t)
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+(b − a)2
(
e|℘|(b, a)

)2
β(1 + γ )eβ(1+γ )e|℘|(b,a)(b, a)ω(t)

= Lω(t).

Therefore, (1.1) is Hyers–Ulam-Rassias stable of type M∗ with constant L given in
(4.3). 
�

If we consider ω ∈ M∗ ∩ M1, then we can improve the HURS constant (if
b > a + 1) as follows.

Theorem 4.2 If (H1), (H2), and (H3) hold, then (1.1) has Hyers–Ulam–Rassias sta-
bility of type M∗ ∩ M1 with HURSM∗∩M1 constant

L := e|℘|(b, a)
(
1 + (b − a)β(1 + γ )e|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a)

)
. (4.4)

Proof Letω ∈ M∗ ∩M1 andψ ∈ C1
rd(I,X) be such that (4.1) holds. Let a0 := ψ(a).

By Theorem 2.1, (3.6) holds. By (H3), there exists a solution φ of (1.1) such that
φ(a) = a0. By Theorem 2.1, (3.7) holds. Subtracting (3.7) from (3.6), we obtain, for
all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ∥∥gψ(s)

∥∥ �s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ‖F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))‖ �s

≤ e|℘|(b, a)

∫ t

a
ω(s)�s + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖ �s

≤ e|℘|(b, a)ω(t) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖ �s.

Applying Gronwall’s inequality, Theorem 1.2, we get, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤ e|℘|(b, a)ω(t)

+
∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))e|℘|(b, a)ω(s)β(1 + γ )e|℘|(b, a)�s

= e|℘|(b, a)ω(t)

+ (
e|℘|(b, a)

)2
β(1 + γ )

∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))ω(s)�s

≤ e|℘|(b, a)ω(t)

+(b − a)
(
e|℘|(b, a)

)2
β(1 + γ )eβ(1+γ )e|℘|(b,a)(b, a)ω(t)

= Lω(t).

Therefore, (1.1) is Hyers–Ulam–Rassias stable of type M∗ ∩ M1 with constant L
given in (4.4). 
�
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Theorem 4.3 If (H1), (H2), and (H3) hold, then (1.1) has Hyers–Ulam–Rassias sta-
bility of type M1 with HURSM1 constant

L := e|℘|(b, a)
(
1 + β(1 + γ )e|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a)

)
. (4.5)

Proof Let ω ∈ M1 and ψ ∈ C1
rd(I,X) be such that (4.1) holds. Let a0 := ψ(a). By

Theorem 2.1, (3.6) holds. By (H3), there exists a solution φ of (1.1). By Theorem 2.1,
(3.7) holds. Subtracting (3.7) from (3.6), we obtain, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ∥∥gψ(s)

∥∥�s

+
∫ t

a
|e℘(t, σ (s))|‖F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))‖�s

≤ e|℘|(b, a)

∫ t

a
ω(s)�s + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)ω(t) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖�s.

Applying Gronwall’s inequality, Theorem 1.2, we get, for all t ∈ I,

‖ψ(t) − φ(t)‖
≤ e|℘|(b, a)ω(t) +

∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))e|℘|(b, a)ω(s)β(1 + γ )e|℘|(b, a)�s

≤ e|℘|(b, a)ω(t) + (
e|℘|(b, a)

)2
β(1 + γ )eβ(1+γ )e|℘|(b,a)(b, a)

∫ t

a
ω(s)�s

≤ e|℘|(b, a)ω(t) + (
e|℘|(b, a)

)2
β(1 + γ )eβ(1+γ )e|℘|(b,a)(b, a)ω(t)

= Lω(t).

Therefore, (1.1) is Hyers–Ulam–Rassias stable of type M1 with constant L given in
(4.5). 
�
Theorem 4.4 Let p > 1 and q := p/(p − 1). If (H1), (H2), and (H3) hold, then (1.1)
has Hyers–Ulam–Rassias stability of type Mp with HURSMp constant

L := e|℘|(b, a)
q
√
b − a

(
1 + β(1 + γ )e|℘|(b, a)

q
√
b − aeβ(1+γ )e|℘|(b,a)(b, a)

)
.

(4.6)

Proof Let ω ∈ Mp and ψ ∈ C1
rd(I,X) be such that (4.1) holds. Let a0 := ψ(a).

By Theorem 2.1, (3.6) holds. By (H3), there exists a solution φ of (1.1) such that
φ(a) = a0. By Theorem 2.1, (3.7) holds. Subtracting (3.7) from (3.6), we obtain, for
all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ∥∥gψ(s)

∥∥�s
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+
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ‖F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))‖�s

≤ e|℘|(b, a)

∫ t

a
ω(s)�s + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)
q
√
t − a p

√∫ t

a
ωp(s)�s

+β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)
q
√
b − a p

√
ωp(t) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)
q
√
b − aω(t) + β(1 + γ )e|℘|(b, a)

∫ t

a
‖ψ(s) − φ(s)‖�s,

where we have used Hölder’s inequality, Theorem 1.3. Thus, by applying Gronwall’s
inequality, Theorem 1.2, we get, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤ e|℘|(b, a)
q
√
b − aω(t)

+
∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))e|℘|(b, a)

q
√
b − aω(s)β(1 + γ )e|℘|(b, a)�s

≤ e|℘|(b, a)
q
√
b − aω(t)

+ (
e|℘|(b, a)

)2
eβ(1+γ )e|℘|(b,a)(b, a)

q
√
b − aβ(1 + γ )

∫ t

a
ω(s)�s

≤ Lω(t).

Therefore, (1.1) has Hyers–Ulam–Rassias stability of typeMp with constant L given
in (4.6). 
�

For the last result, we denote, for r ≥ 0, by Mr
p the family

Mr
p :=

{
ω ∈ Crd(I, (0,∞)) :

∫ t

a
ωp(s)�s ≤ rωp(t) for all t ∈ I

}
.

Theorem 4.5 If (H1), (H2), and (H3) hold, then (1.1) has Hyers–Ulam–Rassias sta-
bility of type Mr

p with HURSMr
p
constant

L := e|℘|(b, a)
q
√
b − a p

√
r
(
1 + β(1 + γ )

q
√
b − a p

√
re|℘|(b, a)eβ(1+γ )e|℘|(b,a)(b, a)

)
. (4.7)

Proof Let ω ∈ Mr
p and ψ ∈ C1

rd(I,X) be such that (4.1) holds. Let a0 := ψ(a).
By Theorem 2.1, (3.6) holds. By (H3), there exists a solution φ of (1.1) such that
φ(a) = a0. By Theorem 2.1, (3.7) holds. Subtracting (3.7) from (3.6), we obtain, for



HUS/HURS for first-order nonlinear dynamic equations Page 13 of 14    45 

all t ∈ I,

‖ψ(t) − φ(t)‖ ≤
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ∥∥gψ(s)

∥∥�s

+
∫ t

a

∣∣e℘(t, σ (s))
∣∣ ‖F(s, ψ(s), h(ψ(s))) − F(s, φ(s), h(φ(s)))‖�s

≤ e|℘|(b, a)

∫ t

a
ω(s)�s + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)
q
√
t − a p

√∫ t

a
ωp(s)�s

+e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖�s

≤ e|℘|(b, a)
q
√
b − a p

√
rω(t) + e|℘|(b, a)β(1 + γ )

∫ t

a
‖ψ(s) − φ(s)‖�s,

where we have used Hölder’s inequality, Theorem 1.3. Thus, by applying Gronwall’s
inequality, Theorem 1.2, we get, for all t ∈ I,

‖ψ(t) − φ(t)‖ ≤ e|℘|(b, a)
q
√
b − a p

√
rω(t)

+
∫ t

a
eβ(1+γ )e|℘|(b,a)(t, σ (s))e|℘|(b, a)β(1 + γ )

q
√
b − a p

√
rω(s)e|℘|(b, a)�s

≤ e|℘|(b, a)
q
√
b − a p

√
rω(t)

+ (
e|℘|(b, a)

)2
eβ(1+γ )e|℘|(b,a)(b, a)β(1 + γ )

q
√
b − a p

√
r
∫ t

a
ω(s)�s

≤ Lω(t).

Therefore, (1.1) has Hyers–Ulam-Rassias stability of typeMr
p with constant L given

in (4.7). 
�
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