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Parameter Estimation Under Failure-Censored
Constant-Stress Life Testing Model: A Bayesian Approach
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Abstract: This article compares likelihood and Bayesian estimations for partially accelerated
constant-stress life test model under type II censoring assuming Pareto distribution of the
second kind. Both maximum likelihood and Bayesian estimators of the model parameters are
derived. The posterior means and posterior variances are obtained under the squared error
loss function using Lindley’s approximation procedure. The advantages of this proposed
procedure are shown. Monte Carlo simulations are conducted under different samples sizes
and different parameter values to assess and compare the proposed methods of estimation.
A noninformative prior on the model parameters is used to make the comparison more
meaningful. It has been observed that Lindley’s method usually provides posterior variances
and mean squared errors smaller than those of the maximum likelihood estimators. That is,
Lindley’s method produces improved estimates, which is an advantage of this method.

Keywords: Bayesian estimation; Failure censoring; Maximum likelihood estimation; Pareto
distribution; Partially accelerated constant-stress test; Squared error loss function.

Subject Classifications: 62N01; 62N05.

1. INTRODUCTION

Based on failure censored data, reliability analysis for constant-stress partially
accelerated life tests (CSPALT) with product lifetime following Pareto distribution
of the second kind is investigated. In practice, most products such as lamps,
semiconductors, microelectronics, etc., run at a constant stress level. Such testing is
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Accelerated Constant-Stress Life Testing 265

simple and has several advantages: first, it is easier to maintain a constant stress
level in most tests. Second, accelerated test models are better developed. Third, data
analysis for reliability estimation is well developed and computerized Nelson (1990).

In the case of simple CSPALT, the sample size of the test units is divided,
using a prespecified sample proportion, into two parts. The first part runs
under use/normal condition and the remaining units are tested under accelerated
condition. The test items are run until failures occur or the observations are
censored. The object of partially accelerated life tests (PALT) is to collect more
failure data in a limited time without necessarily using high stresses to all test units.

For an overview of CSPALT, there are few studies on constant stress, such
as Bai and Chung (1992); Bai et al. (1993); Ismail et al. (2011), and Ismail (2014).
All of these studies were performed based on classical methods under type I
censoring. This article deals with the Bayesian approach with type II censoring
for estimating the parameters under CSPALT considering the Lindley method for
approximation of integrals. As indicated by Sinha (1986), such an approximation
has led to many useful applications. In addition, as pointed out by Achcar (1994),
the use of approximate Bayesian methods could be a good alternative for the usual
existing classical asymptotic methods used in accelerated life testing (ALT). With
this approach, simple expressions easy to use for the marginal posterior moments
are obtained, which is a result that could be of great practical interest, especially for
industrial applications.

From the Bayesian point of view, few of studies have been considered on PALT.
Goel (1971) used the Bayesian approach for estimating the acceleration factor and
the parameters in the case of step-stress PALT (SSPALT) with complete sampling
for items having exponential and uniform distributions. In the case of SSPALT,
a test item is first run at use condition and, if it does not fail for a prespecified
time �, then it is run at accelerated condition until it fails or the test is terminated.
DeGroot and Goel (1979) investigated the optimal Bayesian design of PALT in
the case of the exponential distribution under complete sampling. Abdel-Ghani
(1998) considered the Bayesian approach to estimate the parameters of Weibull
distribution in SSPALT with censoring. Tahir (2003) estimated the failure rate
with the Bayes estimator under the squared error loss in SSPALT assuming the
exponential distribution. Ismail (2010) considered the Bayesian approach to estimate
the parameters of Gompertz distribution under SSPALT model with time censoring.

The objective of this article is to apply a Bayesian analysis, with a squared
error loss function, on CSPALT with type II censoring considering a two-
parameter Pareto distribution. The Bayes estimators (BEs) of the acceleration factor
and the distribution parameters are derived and compared with the maximum
likelihood estimator (MLE) counterparts by Monte Carlo simulations. To make the
comparison more meaningful, the noninformative priors (NIPs) on both shape and
scale parameters are considered.

The rest of this article is organized as follows. In Section 2, the model and test
method are described. Approximate BEs of the parameters under consideration are
derived in Section 3. In Section 4, BEs derived in Section 3 are obtained numerically
using Lindley’s approximation and compared with the MLEs. Finally, Section 5
concludes the article.
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266 Ismail

2. THE MODEL AND TEST METHOD

2.1. The Pareto Distribution as a Lifetime Model

In this article, the two-parameter Pareto distribution of the second kind is
considered as a lifetime model. The Pareto distribution was introduced by Pareto
(1897) as a model for the distribution of income. In recent years, its models in
several different forms have been studied by many authors (Cohen and Whitten,
1988; Davis and Feldstein, 1979; Grimshaw, 1993; among others). The Pareto
distribution of the second kind is also known as Lomax’s or Pearson’s type VI
distribution; see Johnson et al. (1994). It has been found to be a good model in
biomedical problems, such as survival time following a heart transplant Bain and
Engelhardt (1992). Using the Pareto distribution, Dyer (1981) studied annual wage
data of production line workers in a large industrial firm. Lomax (1954) used this
distribution in the analysis of business failure data. The length of wire between flaws
also follows a Pareto distribution (Bain and Engelhardt, 1992). Because the Pareto
distribution has a decreasing hazard or failure rate, it has often been used to model
incomes and survival times (Howlader and Hossain, 2002).

The probability density function of the Pareto distribution of the second kind
is given by

fT �t� �� �� = ���

�� + t��+1
� t > 0� � > 0� � > 0	 (2.1)

The survival function takes the form

R�t� = ��

�� + t��
	 (2.2)

The corresponding failure rate function is

h�t� = �

� + t
	 (2.3)

According to McCune and McCune (2000), the Pareto distribution has classically
been used in economic studies of income, size of cities and firms, service time
in queuing systems, and so on. In addition, it has been used in connection with
reliability theory and survival analysis; see Davis and Feldstein (1979).

2.2. Constant-Stress PALT

The test procedure of the constant-stress PALT and its assumptions are described
as follows:

2.2.1. Test Procedure

In a constant-stress PALT, the total sample size n of test units is divided into two
parts such that n
 items randomly chosen among n test items sampled are allocated
to accelerated condition and the remaining are allocated to use condition. Each test
item is run until the censoring time is reached or the item fails and the test condition
is not changed.
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Accelerated Constant-Stress Life Testing 267

2.2.2. Assumptions

1. The lifetimes Ti, i = 1� 	 	 	 � n�1 − 
� of items allocated to use condition are
independent and identically distributed (i.i.d.) random variables (r.v.s).

2. The lifetimes Xj , j = 1� 	 	 	 � n
 of items allocated to accelerated condition are
i.i.d. r.v.s.

3. Suppose that the lifetime of an item at accelerated condition is denoted by X,
then the lifetime of this item at use condition T is given by the relation T = �X.

Because the lifetimes of the test items follow a Pareto distribution of the second
kind, the probability density function of an item tested at use condition is given by

fT �t� �� �� = ���

�� + t��+1
� t > 0� � > 0� � > 0� (2.4)

whereas for an item tested at accelerated condition, the probability density function
is given by

fX�x� �� �� = ����

�� + �x��+1
� x > 0� � > 0� � > 0� (2.5)

where X = �−1T .

3. BAYESIAN ESTIMATION

In this section, the squared error (SE) loss function is considered. Under SE loss
function, the Bayes estimator of a parameter is its posterior expectation. The Bayes
estimators cannot be expressed in explicit forms. Approximate Bayes estimators will
be obtained under the assumption of NIPs using Lindley’s approximation. In most
applied problems, information about the parameters is available in an independent
manner’ see Basu et al. (1999). Thus, here it is assumed that the parameters are
independent a priori and let the NIP for each parameter be represented by the
limiting form of the appropriate natural conjugate prior.

It follows that an NIP for the acceleration factor � is given by 
1��� ∝ �−1,
� > 1.

In addition, the NIPs for the scale parameter � and the shape parameter � are
respectively


2��� ∝ �−1� � > 0� and 
3��� ∝ �−1� � > 0	

Therefore, the joint NIP of the three parameters can be expressed by


��� �� �� ∝ �����−1� � > 1� � > 0� � > 0	 (3.1)

Using type II censored data in CSPALT, each test item runs at either use or
accelerated condition only until a predetermined censoring time y�r� is reached. That
is, after acquiring r failures the test is terminated. Therefore, the observed lifetimes
t�1� ≤ · · · ≤ t�nu� ≤ y�r�, and x�1� ≤ · · · = x�na� ≤ y�r� are ordered failure times at use
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268 Ismail

and accelerated conditions, respectively, where nu and na are the corresponding
numbers of items failed in each stage. Let �ui and �aj be indicator functions such
that �ui ≡ I �Ti = y�r�) and �aj ≡ I (Xj ≤ y�r�), where i = 1� 	 	 	 � n. Then the total
likelihood function for (t1; �u1� 	 	 	 � tn�1−
�; �un�1−
�, x1; �a1� 	 	 	 � xn


; �an

) is given by

L��� �� �� =
n�1−
�∏

i=1

Lui�ti� �� �� ·
n
∏
j=1

Laj�xj� �� �� ��

=
n�1−
�∏

i=1

[
���

�� + ti�
�+1

]�ui

[
��

�� + y�r��
�

]�̄ui

� (3.2)

	
n
∏
j=1

[
����

�� + � xj�
�+1

]�aj
[

��

�� + � y�r��
�

]�̄aj

where Lui is the likelihood function for ti at use condition, Laj is the likelihood
function for xj at accelerated condition, 
 is the proportion of sample units allocated
to accelerated condition, and

�̄ui = 1 − �ui

and

�̄aj = 1 − �aj	

Obviously, the Bayes solution for estimating the parameters is extremely
difficult to obtain in a closed form because the posterior density is too
complicated. Therefore, numerical approximations are necessary for finding the
posterior moments of interest. For mathematical simplicity, the Bayesian analysis
is introduced under the Jeffreys vague prior distribution for the three unknown
parameters. Assuming the vague prior distribution of �, �, and � as in (3.1) and
forming the product of it and the likelihood function defined in (3.3), the joint
posterior distribution of �, �, and � can be expressed as follows:

g��� �� �
∣∣y � ∝ L�y ��� �� � � 	 
��� �� ��

∝ �na−1�2n�−1�nu+na(
� + y(r)

)�n
̄−nu�� (
� + � y(r)

)�n
−na��

[
n
∏
i=1

1

�� + ti�
�+1

]�ui

(3.3)

·
[

n
∏
j=1

1

�� + � xj�
�+1

]�aj

As mentioned earlier, under a squared error loss function, the Bayes estimator of a
parameter is its posterior expectation. To obtain the posterior means and posterior
variances of �, �, and �, nontractable integrals will be met. It is not possible
to obtain them analytically. The marginal posteriors are somewhat unwieldy and
require a numerical integration that may not converge. Instead, an approximation
due to Lindley (1980) via an asymptotic expansion of the ratio of two nontractable
integrals is used to obtain approximate Bayes estimators. Lindley’s approximation
is evaluated at the MLEs of the model parameters.
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Accelerated Constant-Stress Life Testing 269

Now, let 
 be a set of parameters {
1, 
2� 	 	 	 � 
m}, where m is the number
of parameters, then the posterior expectation of an arbitrary function u(
) can be
asymptotically estimated by

E�u�
�� =
∫



u�
�
�
�eln L�y�
�d
∫




�
�eln L�y�
�d


(3.4)

≈
[

u + �1/2�
∑
i�j

�u
�2�
ij + 2u

�1�
i �

�1�
j ��ij + (1/2)

∑
i�j�k�s

L
�3�
ijk�ij�ksu

�1�
s

]
↓ 
̂�

which is the Bayes estimator of u(
) under a squared error loss function, where

(
) is the prior distribution of 
, u ≡ u(
), L ≡ L(
) is the likelihood function,
� ≡ �(
) = log 
(
), �ij are the elements of the inverse of the asymptotic Fisher
information matrix of �, �, and �, and

u
�1�
i = �u

�
i

� u
�2�
ij = �2u

�
i�
j

, �
�1�
j = �log 
�
�

�
j

and L
�3�
ijk = �3ln L�y�
�

�
i�
j�
k

Such an approximation is easy to use and does not require innovative programming
and extensive computer time. According to Green (1980), the linear Bayes
estimator in (3.4) is a very good and operational approximation for the ratio
of multidimension integrals. As indicated by Sinha (1986), it has led to many
useful applications. However, if the domain of the parameters is a function of the
parameters, Bayes estimators using Lindley’s rule are not obtainable unless the
MLEs exist. The derivation of posterior means and posterior variances is shown in
the Appendix.

4. SIMULATION STUDIES

In this section, the objective is to illustrate the use of Bayesian approach via
Lindley’s method for approximation of integrals to derive the marginal posterior
moments of interest in the case of CSPALT under type II censoring. The data are
generated from a Pareto distribution with different sample sizes. For each sample
size, 5,000 samples are obtained randomly. The posterior means and posterior
variances of the three parameters are obtained numerically. In addition, the MLEs
and Bayes estimators are compared with respect to the mean squared errors (MSEs)
and variability.

Two numerical examples are presented to illustrate the theoretical results of
estimation. The true values of the parameters are set at (�, �, �) = (1.5, 0.4, 0.3)
as a first example with computational results presented in Table 1. In the second
example, the true values of the parameters are (4, 2, 3) with numerical results
summarized in Table 2. Tables 1 and 2 contain the results of both MLE and
Bayesian estimation for the parameters of Pareto distribution applied to CSPALT
with type II censoring. As seen from the numerical results, the Bayesian estimators
usually have smaller MSEs and smaller variances than those of the MLEs, which is a
great advantage of the use of Lindley’s method. Accordingly, the posterior means or
approximate BEs as shown from the computational results using Lindley’s method
are more accurate and more efficient than MLEs.
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270 Ismail

Table 1. Average values of the MLEs and approximate BEs with associated estimated
variances and MSEs when � = 1	5, � = 0	4, � = 0	3, given 
 = 0	50 and r = 0	70 n based on
varying sample sizes using type II censoring

n Parameter Method Estimate MSE Variance

25 � MLE
Bayes

1.7647
1.7009

0.0602
0.0510

0.0327
0.0261

� MLE
Bayes

0.6091
0.4593

0.0345
0.0259

0.0146
0.0072

� MLE
Bayes

0.4023
0.3849

0.0249
0.0186

0.0065
0.0036

50 � MLE
Bayes

1.6592
1.5818

0.0443
0.0338

0.0213
0.0134

� MLE
Bayes

0.4776
0.4366

0.0238
0.0161

0.0084
0.0045

� MLE
Bayes

0.3699
0.3442

0.0184
0.0131

0.0029
0.0013

75 � MLE
Bayes

1.6126
1.5375

0.0314
0.0263

0.0109
0.0038

� MLE
Bayes

0.4323
0.4154

0.0175
0.0135

0.0033
0.0020

� MLE
Bayes

0.3305
0.3151

0.0042
0.0017

0.0010
0.0005

100 � MLE
Bayes

1.5292
1.5198

0.0061
0.0033

0.0022
0.0020

� MLE
Bayes

0.4092
0.3982

0.0047
0.0026

0.0019
0.0007

� MLE
Bayes

0.3137
0.3023

0.0013
0.0011

0.0004
0.0001

Table 2. Average values of the MLEs and approximate BEs with associated estimated
variances and MSEs when � = 4, � = 2, � = 3, given 
 = 0	50 and r = 0	70 n based on
varying sample sizes using type II censoring

n Parameter Method Estimate MSE Variance

25 � MLE
Bayes

5.0466
4.8144

0.0375
0.0317

0.0182
0.0143

� MLE
Bayes

2.8742
2.7284

0.0214
0.0162

0.0081
0.0042

� MLE
Bayes

3.5296
3.2854

0.0155
0.0116

0.0036
0.0023

50 � MLE
Bayes

4.7954
4.6208

0.0276
0.0211

0.0117
0.0071

� MLE
Bayes

2.5788
2.4762

0.0149
0.0101

0.0047
0.0025

� MLE
Bayes

3.1752
3.0784

0.0114
0.0082

0.0016
0.0008

(continued)
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Accelerated Constant-Stress Life Testing 271

Table 2. (continued)

75 � MLE
Bayes

4.2494
4.0972

0.0195
0.0165

0.0060
0.0021

� MLE
Bayes

2.4864
2.4422

0.0109
0.0084

0.0019
0.0011

� MLE
Bayes

3.0666
3.0208

0.0028
0.0010

0.0005
0.0002

100 � MLE
Bayes

4.0788
4.0226

0.0037
0.0021

0.0012
0.0009

� MLE
Bayes

2.4234
2.4042

0.0029
0.0016

0.0011
0.0004

� MLE
Bayes

3.0204
3.0004

0.0008
0.0007

0.0003
0.0001

5. CONCLUSION

In this article the MLEs and Bayesian estimations of the parameters of Pareto
distribution and the acceleration factor have been obtained under CSPALT
model with type II censoring. The Bayes estimators have been obtained under
the assumptions of squared error loss functions and noninformative priors. It
has been observed that the Bayesian estimators cannot be obtained analytically.
Instead, Lindley’s approximation has been used to obtain the Bayesian estimates
numerically.

It is seen that the approximation works very well even for small sample sizes. In
addition, it is noted that Lindley’s method usually gives posterior variances smaller
than the variances of the MLEs. That is, it provides better estimates, which is an
advantage of this method. It can be said that the intrinsic appeal of this method
can be expressed in is its being a sort of adjustment to the maximum likelihood
approach to reduce variability.

APPENDIX: THE POSTERIOR MEANS AND POSTERIOR VARIANCES

There are three parameters in the model. That is, m = 3. Let the subscripts 1, 2, and
3 refer to �, �, and �, respectively. It is not easy to obtain the posterior moments
analytically. Therefore, using Lindley’s expansion, the posterior mean (i.e., Bayesian
estimator under squared error loss function) and the posterior variance of � are
given, respectively, in the form

�∗ = E�� �y �

=
[
� −

(
�11

�
+ �12

�
+ �13

�

)
+ 1

2
��11E1 + �12E2 + �13E3�

]
↓ 
̂� (A.1)

and

Var �� �y � = E��2 �y � − ��∗�2

= �11 −
[(

�11

�
+ �12

�
+ �13

�

)
− 1

2
��11E1 + �12E2 + �13E3�

]2

↓ 
̂	 (A.2)
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272 Ismail

Conducting the same procedure, the posterior mean and posterior variance of the
scale parameter � take the following form:

�∗ = E �� �y �

=
[
� −

(
�21

�
+ �22

�
+ �23

�

)
+ 1

2
��21E1 + �22E2 + �23E3�

]
↓ 
̂� (A.3)

and

Var�� �y ) = E��2 �y � − ��∗�2

= �22 −
[(

�21

�
+ �22

�
+ �23

�

)
− 1

2
��21E1 + �22E2 + �23E3�

]2

↓ 
̂	 (A.4)

Similarly, for the shape parameter �, the posterior mean and the posterior variance
are expressed as follows:

�∗ = E�� �y )

=
[
� −

(
�31

�
+ �32

�
+ �33

�

)
+ 1

2
��31E1 + �32E2 + �33E3�

]
↓ 
̂� (A.5)

and

Var�� �y ) = E��2 �y � − ��∗�2

= �33 −
[(

�31

�
+ �32

�
+ �33

�

)
− 1

2
��31E1 + �32E2 + �33E3�

]2

↓ 
̂� (A.6)

E1 = ∑
i�j

�ijL
�3�
ij1� E2 = ∑

i�j

�ijL
�3�
ij2� E3 = ∑

i�j

�ijL
�3�
ij3	

where
For i� j = 1� 2� 3�
�ij are the elements of the inverse of the asymptotic Fisher information L

�3�
ijk � k =

1� 2� 3 matrix of the MLEs of �, �, and � in the case of type II censored data and is
the third derivative of the natural logarithm of the likelihood function.

To calculate the posterior means and the posterior variances of �, �, and �
derived before, both second and third derivatives of the natural logarithm of the
likelihood function in (3.3) must be obtained.

The second derivatives can be presented by the following equations:

�2 ln L

��2
= −na

�2
+ �n
 − na� �

(
y(r)

)2

(
� + � y(r)

)2 + �� + 1�
n
∑
j=1

�aj

xj
2(

� + �xj

)2 � (A.7)

�2 ln L

�� ��
= �n
 − na�� y(r)(

� + � y(r)

)2 + �� + 1�
n
∑
j=1

�aj

xj(
� + �xj

)2 � (A.8)
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�2 ln L

�� ��
= − �n
 − na� y(r)

� + � y(r)

−
n
∑
j=1

�aj

xj

� + �xj

� (A.9)

�2 ln L

��2
= −n�

�2
+ �n
 − na��(

� + � y(r)

)2 + �n
̄ − nu��(
� + y(r)

)2

+ �� + 1�

[
n
̄∑
i=1

�ui

�� + ti�
2 +

n
∑
j=1

�aj(
� + �xj

)2

]
(A.10)

�2 ln L

�� ��
= n

�
− �n
 − na�

� + � y(r)

− �n
̄ − nu�

� + y(r)

−
[

n
̄∑
i=1

�ui

� + ti

+
n
∑
j=1

�aj

� + �xj

]
� (A.11)

�2 ln L

��2
= −nu + na

�2
(A.12)

For the third derivatives, they are given as follows:

L
�3�
111 = �3 ln L

��3
= 2na

�3
− 2�n
 − na���y(r)�

3(
� + � y(r)

)3 − 2�� + 1�
n
∑
j=1

�aj

x3
j

�� + �xj�
3 � (A.13)

L
�3�
222 = �3 ln L

��3
= 2n�

�3
− 2�n
 − na��(

� + � y(r)

)3 − 2�n
̄ − nu��(
� + y(r)

)3

− 2�� + 1�

[
n
∑
i=1

�ui

�� + ti�
3 +

n
∑
j=1

�aj

�� + �xj�
3

]
� (A.14)

L
�3�
333 = �3 ln L

��3
= 2�nu + na�

�3
� (A.15)

L
�3�
112 = �3 ln L

��2��
= −2�n
 − na���y(r)�

2(
� + � y(r)

)3

− 2�� + 1�
n
∑
j=1

�aj

x2
j

�� + �xj�
3 = L

�3�
121 = L

�3�
211� (A.16)

L
�3�
221 = �3 ln L

��2��
= −2�n
 − na�� y(r)(

� + � y(r)

)3

− 2�� + 1�
n
∑
j=1

�aj

xj

�� + �xj�
3 = L

�3�
212 = L

�3�
122� (A.17)
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L
�3�
113 = �3 ln L

��2��
= �n
 − na� �y(r) �2(

� + � y(r)

)2 +
n
∑
j=1

�aj

x2
j

�� + �xj�
2 = L

�3�
131 = L

�3�
311� (A.18)

L
�3�
123 = �3 ln L

�� �� ��
= �n
 − na� y(r)(

� + � y(r)

)2 +
n
∑
j=1

�aj

xj

�� + �xj�
2

= L
�3�
132 = L

�3�
213 = L

�3�
231 = L

�3�
312 = L

�3�
321� (A.19)

L
�3�
223 = �3 ln L

��2��
= − n

�2
+ �n
 − na�(

� + � y(r)

)2 + �n
̄ − nu�(
� + y(r)

)2

+
n
∑
i=1

�ui

�� + ti�
2 +

n
∑
j=1

�aj

�� + �xj�
2

= L
�3�
232 = L

�3�
322� (A.20)

L
�3�
331 = �3 ln L

��2��
= L

�3�
313 = L

�3�
133� (A.21)

L
�3�
332 = �3 ln L

��2��
= L

�3�
323 = L

�3�
233	 (A.22)

NOMENCLATURE

n number of step-stress test units (total sample size)
nu, na number of test units failed at use and accelerated conditions, respectively
T lifetime of an item at use condition
X lifetime of an item at accelerated condition
y�r� censoring time in CSPALT (the time of the rth failure at

which the test is terminated)
� shape parameter (� > 0)
� acceleration factor (� > 1)
� scale parameter (� > 0)

 proportion of tested items that allocated to accelerated condition
∧ implies a maximum likelihood estimator
↓ (.) evaluated at (.)

ACKNOWLEDGMENTS

The author thanks Professor Nitis Mukhopadhyay, Associate Editor, and the
reviewers for their valuable time and useful suggestions to improve the quality of
the article.

FUNDING

This project was supported by King Saud University, Deanship of Scientific
Research, College of Science Research Center.

D
ow

nl
oa

de
d 

by
 [

K
in

g 
Sa

ud
 U

ni
ve

rs
ity

] 
at

 0
2:

55
 1

0 
Ja

nu
ar

y 
20

16
 



Accelerated Constant-Stress Life Testing 275

REFERENCES

Abdel-Ghani, M. M. (1998). Investigation of Some Lifetime Models Under Partially
Accelerated Life Tests, Unpublished Ph.D. thesis, Department of Statistics, Faculty of
Economics and Political Science, Cairo University, Giza, Egypt.

Achcar, J. A. (1994). Approximate Bayesian Inference for Accelerated Life Tests, Journal of
Applied Statistical Science 1: 223–237.

Bai, D. S. and Chung, S. W. (1992). Optimal Design of Partially Accelerated Life Tests for
the Exponential Distribution Under Type-I Censoring, IEEE Transactions on Reliability
41: 400–406.

Bai, D. S., Chung, S. W., and Chun, Y. R. (1993). Optimal Design of Partially Accelerated
Life Tests for the Lognormal Distribution Under Type-I Censoring, Reliability
Engineering and System Safety 40: 85–92.

Bain, L. J. and Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics,
second edition, Boston: P.W.S-KENT.

Basu, S., Basu, A. P., and Mukhopadhyay, C. (1999). Bayesian Analysis for Masked System
Failure Data Using Non-Identical Weibull Models, Journal of Statistical Planning
Inference 78: 255–275.

Cohen, A. C. and Whitten, B. J. (1988). Parameter Estimation in Reliability and Life Span
Models, New York: Dekker.

Davis, H. T. and Feldstein, M. L. (1979). The Generalized Pareto Law as a Model for
Progressively Censored Survival Data, Biometrika 66: 299–306.

DeGroot, M. H. and Goel, P. K. (1979). Bayesian and Optimal Design in Partially
Accelerated Life Testing, Naval Research Logistics Quarterly 16: 223–235.

Dyer, D. (1981). The Structural Probability for the Strong Pareto Law, Canadian Journal of
Statistics 9: 71–77.

Goel, P. K. (1971). Some Estimation Problems in the Study of Tampered Random
Variables, Report No. 50, Pittsburgh: Department of Statistics, Carnegie-Mellon
University.

Green, J. (1980). Discussant on D.V. Lindley’s (1980) Paper on Approximate Bayesian
Methods, Trabajos Estadistica 31: 241–243.

Grimshaw, S. W. (1993). Computing Maximum Likelihood Estimates for the Generalized
Pareto Distribution, Technometrics 35: 185–191.

Howlader, H. A. and Hossain, A. M. (2002). Bayesian Survival Estimation of Pareto
Distribution of the Second Kind Based on Failure-Censored Data, Computational
Statistics and Data Analysis 38: 301–314.

Ismail, A. A. (2010). Bayes Estimation of Gompertz Distribution Parameters and
Acceleration Factor Under Partially Accelerated Life Tests with Type-I Censoring,
Journal of Statistical Computation and Simulation 80: 1253–1264.

Ismail, A. A. (2014). On Designing Constant-Stress Partially Accelerated Life Tests Under
Time-Censoring, Strength of Materials 46: 132–139.

Ismail, A. A., Abdel-Ghaly, A. A., and El-Khodary, E. H. (2011). Optimum Constant-Stress
Life Test Plans for Pareto Distribution Under Type-I Censoring, Journal of Statistical
Computation and Simulation 81: 1835–1845.

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions,
vol. 1, second edition, New York: Wiley.

Lindley, D. V. (1980). Approximate Bayesian Methods, Trabajos Estadistica 31: 223–237.
Lomax, K. S. (1954). Business Failures: Another Example of the Analysis of Failure Data,

Journal of American Statistical Association 49: 847–852.
McCune, E. D. and McCune, S. L. (2000). Estimation of the Pareto Shape Parameter,

Communication in Statistics - Simulations & Computation 29: 1317–1324.
Nelson, W. (1990). Accelerated Testing: Statistical Models, Data Analysis and Test Plans,

New York: Wiley.

D
ow

nl
oa

de
d 

by
 [

K
in

g 
Sa

ud
 U

ni
ve

rs
ity

] 
at

 0
2:

55
 1

0 
Ja

nu
ar

y 
20

16
 



276 Ismail

Pareto, V. (1897). Cours d’Economie Politique, Paris: Rouge et Cie.
Sinha, S. K. (1986). Reliability and Life Testing, New York: Wiley.
Tahir, M. (2003). Estimation of the Failure Rate in a Partially Accelerated

Life Test: A Sequential Approach, Stochastic Analysis and Applications 21:
909–915.

D
ow

nl
oa

de
d 

by
 [

K
in

g 
Sa

ud
 U

ni
ve

rs
ity

] 
at

 0
2:

55
 1

0 
Ja

nu
ar

y 
20

16
 


